GUARDRAIL UTILIZATION: COST-EFFECTIVENESS COMPUTER PROGRAM TO ANALYZE

W-BEAM GUARDRAIL ON FILL SLOPES

by

EDWARD R. POST, P.E. RICHARD J. RUBY, P.E. PATRICK T. McCOY, P.E. PATRICK A. CHASTAIN, E.I.T. STEVEN S. RUPP, E.I.T.

in cooperation with
NEBRASKA DEPARTMENT OF ROADS

CIVIL ENGINEERING DEPARTMENT RESEARCH REPORT NO. TRP-03-004-79

Engineering Research Center College of Engineering and Technology University of Nebraska Lincoln, Nebraska 68588

GUARDRAIL UTILIZATION: A COST-EFFECTIVENESS COMPUTER PROGRAM TO EVALUATE W-BEAM GUARDRAIL ON FILL SLOPES

by

Edward R. Post, P.E. Associate Professor of Civil Engineering

Patrick T. McCoy, P.E. Associate Professor of Civil Engineering

Richard J. Ruby, P.E. Assistant Roadway Design Engineer Nebraska Department of Roads

Patrick A. Chastain, E.I.T. Graduate Research Assistant

Steven S. Rupp, E.I.T. Undergraduate Research Assistant

Research Report No. TRP-03-004-79

Sponsored by

Engineering Research Center College of Engineering and Technology University of Nebraska

in cooperation with

Nebraska Department of Roads

June 1980

Civil Engineering Department University of Nebraska Lincoln, Nebraska 68588

ABSTRACT

Key Words: Guardrail, and Roadside Safety

The purpose of this study conducted by the University of Nebraska was to assist the Nebraska Department of Roads in establishing new guardrail design policies and standards in Nebraska which will take into consideration the relative "effectiveness" and "benefit" of guardrail and alternatives to guardrail installations as a function of highway type, traffic volumes, and the annualized costs of construction, maintenance, and repair. Effectiveness is a measure of the annual reduction in the number of injury accidents, whereas, benefit is a measure of the annual reduction in accident costs.

This report describes the computer program developed to expedite the lengthy and tedious cost-effectiveness and benefit-cost calculations for making W-beam guardrail improvements on roadside embankments. Case study problems are worked to illustrate the usage of the hazard inventory and improvement alternative input data coding forms and the interpretation of the output listing. Also, the cost-effectiveness and benefit-cost methodologies, on which the program was developed, are discussed in detail.

The hazard inventory and improvement alternative coding forms developed in this study are general in scope and include most roadside hazards that are likely to be encountered by an errant automobile. Recommendations for future additions to the computer program to include hazards other than W-beam guardrail and embankments are presented.

The work accomplished in this study has demonstrated that the cost-effectiveness and benefit-cost computer program shows great potential in providing highway engineers and administrators in Nebraska with a rapid and efficient managerial tool for evaluating spot safety improvement projects and/or design projects in order to realize the greatest return on the capital investment made to reduce injury accidents.

ACKNOWLEDGEMENTS

This research project was conceived by the Nebraska Department of Roads and the University of Nebraska for the purpose of providing a basis for the development of a cooperative research program between the agencies. It was intended to demonstrate the research capabilities of the University and the feasibility of cooperative research. Therefore, special recognition is given to the following members of the Department of Roads Research Advisory Committee for their guidance and encouragement in support of a cooperative research program:

Derald S. Kohles, Chairman

Lyman D. Freemon

Don O. Swing

Eldon D. Orth

William J. Ramsey

Walter E. Witt

Larry L. Brown, Secretary

Consultation, suggestions, and assistance provided by the following members of the Department of Roads Guardrail Review Committee during the conduct of the research contributed greatly to the successful completion of this project:

Don O. Swing, Chairman

Willard E. Rachow

Richard J. Ruby

Max D. Biggs

Ronald H. Heedum

Ron R. Korinek

Funding for this project was provided by the University Engineering Research Center and Civil Engineering Department through efforts of:

Donald M. Edwards, Director Engineering Research Center University of Nebraska

Edward N. Wilson, Chairman Civil Engineering Department University of Nebraska

The leadership provided by Drs. Edwards and Wilson in support of the establishment of a cooperative research program between the Department of Roads and the University was greatly appreciated.

TABLE OF CONTENTS

. <u>I</u>	Page
ABSTRACT	i
ACKNOWLEDGEMENTS	ii
LIST OF FIGURES	vi
LIST OF TABLES	/iii
INTRODUCTION	1
COMPUTER PROGRAM	3
Roadside Hazard Inventory Form	3
Roadside Hazard Improvement Form	12
Input Data Format	13
Program Strategy	14
Output Data Format	23
COMPUTER MODELS OF AUTOMOBILE	25
HVOSM	25
BARRIER VII	28
SEVERITY OF AUTOMOBILE ENCROACHMENTS	31
Severity-Index Equations for Embankments	32
Severity-Index Equations for Guardrail	35
COST-EFFECTIVENESS METHODOLOGY	36
Hazard-Index	38
Encroachment Rate	38
Probability of Encounter	39
Probability of Injury Accident	45
Encroachment Speed-Angle Probabilities	46

		<u> </u>	Page
	Anı	nualized Cost	48
	Zei	ro Accident Reduction	51
	BENEFIT-	-COST METHODOLOGY	55
	CASE STU	UDY NO. 3	59
	Ex	isting Roadway	59
	Imp	provement Alternative No. 1	59
	Imp	provement Alternative No. 2	62
	Con	nputer Output Listing	66
	SUMMARY	AND CONCLUSIONS	67
,	REFERENC	CES	71
	APPENDIC	CES	73
	Α.	Computer Program Flow Charts	74
	В.	Computer Program Source Listing	97
	A d.	HVOSM Sample Computer Simulations	163
	Bø.	HVOSM Terrain Layout (typical)	168
	Έ.	HVOSM Embankment Simulation Results	171
	F.	Slope Severity-Index Equations	185
	G.	BARRIER VII Sample Computer Simulations	190
	н.	W-Beam Guardrail Severity-Index Equations	198
	I.	Case Study No. 1 (Input Data and Output)	200
	J.	Case Study No. 2 (Input Data and Output)	207

LIST OF FIGURES

				Page
Figure	1		Roadside Hazard Inventory Form	4
Figure	2		Roadside Hazard Improvement Form	5
Figure	3		Case Study No. 2	15
Figure	4		Arrangement of Hazard Inventory and Improvement Alternative Coding Forms for Different Size Groups	16
Figure	5		Roadside Hazard Inventory Computer Names	18
Figure	6		Roadside Hazard Improvement Computer Names	19
Figure	7		Computer Output Listing of Case Study No. 2	24
Figure	8		Idealization of HVOSM	26
Figure	9		Comparison of HVOSM and Full Scale Test on Embankment With 3:1 Front Slope	29
Figure	10)	Relationship Between Severity-Index and Vehicle Encroachment Conditions and Fill Slope Configuration	33
Figure	11		Location of Improvement Alternative and	
			Its Relationship to Path of Encroaching Vehicle	41
Figure	12		Distributions of Lateral Extent of Encroachments	44
Figure	13		Relationship Between Severity-Index and Probability of Injury Accidents	47
Figure	14		Relationship Between Severity-Index and Length of Guardrail Damage	52
Figure	15		Highway Cross Section for Case Study No. 3	60
Figure	16		Roadside Hazard Inventory Form (Case Study No. 3)	61

			<u> </u>	Page
Figure	17		Improvement Form 3)	63
Figure	18 -		Improvement Form 3)	65
Figure	19 -	 Computer Output	Listing of Case Study No. 3	66
Figure	20 -	 	mpute Guardrail Need Index	70

LIST OF TABLES

					Page
Table 1 Hazard Classification					7
Table 2 Description of Subroutines					20
Table 3 Error Messages				•	22
Table 4 Tolerable Automobile Accelerations		•			32
Table 5 Ditch Width Categories					34
Table 6 Encroachment Rate vs ADT Relationships					40
Table 7 Relationship Between Severity-Index and					
Probability of Injury Accidents	•				46
Table 8 Mean Speeds and Standard Deviations		•	•		48
Table 9 Encroachment Speed-Angle Probabilities	•	•			49
Table 10 Probability of Zero Injury Accident Reduction .	•	•	•	•	54
Table 11 Relationship Between Severity-Index and					
Injury Accident Probabilities, Accident					
Classifications, and Total Accident Costs		•	•	٠	58
Table 12 Improvement Alternative No. 1 Cost Estimates		•	•		62
Table 13 Improvement Alternative No. 2 Cost Estimates	•	•			62
Table 14 Tentative List of Additional Computer Subroutines		•			68

INTRODUCTION

During the past year, the Nebraska Department of Roads (NDR) has been engaged in a review of its policy on the use of guardrail. The purpose of the NDR review was to develop a revised policy which more directly considers the relative safety "effectiveness" of guardrail and alternatives to guardrail installation as a function of highway type, traffic volume, and the costs of construction, maintenance, and repair. The research documented in this report was conducted in support of this policy revision effort.

The primary objective of this research study was to provide the Nebraska Department of Roads a computer-aided procedure for comparing the cost-effectiveness of quardrail installations with alternatives to quardrail such as flattening slopes, removing hazards, or doing nothing. Although the application of the program is currently limited to the evaluation of W-beam guardrail installations and fill slopes, the procedure developed in this study has been designed to facilitate expansion of the scope of its application to include other types of guardrails, traffic barriers, and roadside hazards. In addition to serving as a design tool for evaluating the cost-effectiveness of a specific quardrail installation, the computer-aided procedure can also be used to evaluate the cost-effectiveness of alternative guardrail utilization policies and design standards, which is the ultimate use for which the program was intended. However, because of the ease with which the computeraided procedure can be used, it would be feasible to conduct a detailed analysis of each situation rather than apply a generalized guardrail utilization policy. Thus, it would seem desirable to incorporate this procedure into the Road Design System currently being used by the Nebraska Department of Roads.

This report describes the computer-aided procedure developed for the cost-effectiveness evaluation of guardrail installations. Included are a description of the computer program, instructions for its use, and examples which illustrate the preparation of input data and the interpretation of the output. Also, the cost-effectiveness and benefit-cost methodologies, on which development of the procedure was based, are explained. In addition, recommendations for future additions to the computer program are presented.

COMPUTER PROGRAM

The computer program in this study was developed to expedite the lengthy and tedious cost-effectiveness calculations for making W-beam guardrail improvements on roadside fill slopes. The Logic for the program was developed in earlier studies presented by Post $(\underline{1},\underline{2})$. Implementation of the computer program requires that one complete two types of computer coding forms. The first form (see Figure 1) is an inventory form of an existing roadside hazard or base design condition; whereas, the second form (see Figure 2) is an improvement alternative form for reducing the frequency and/or the severity of an existing hazard. Each form represents one computer IBM data card with 80 field specifications. A discussion on the use of each coding form follows.

Roadside Hazard Inventory Form

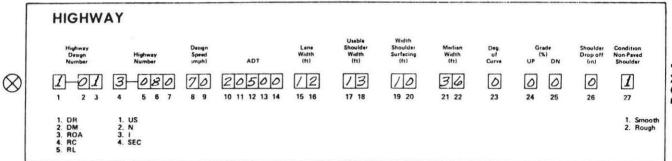
The inventory form shown in Figure 1 is divided into 6 boxes to facilitate in the presentation of the form to the user. The circle at the left of each box with a pre-marked "x" indicates that the data within that box must always be punched; whereas, the user must put an "x" in an unmarked circle if the data within that box is to be punched. The numbers under each small square within a box represent columns on an IBM data card.

Box 1 - Highway

The data in Box 1 is always punched. This box contains information on the type of highway, highway traffic conditions, and highway geometrics. As an example, Interstate I-80 with an ADT of 20,500 would be coded as shown on the following page. The data on this type highway can be obtained from the NDR Minimum Design Standards $(\underline{3})$.

FIGURE 1.

ROADSIDE HAZARD INVENTORY FORM


NEBRASKA DEPARTMENT OF ROADS LINCOLN, NEBRASKA

	mvemory con	docted by				-			
	HIGHWAY								
\otimes	Highway Dasayn Highw Number Numb	er (mph)	AD1	Lane Sh Width (fr)	Jeable Width Shoulder Shoulder Mydth Surfacing (till Till Till Till Till Till Till Till	Median Wadth (ft)	Deg. Grade of (%) Curve UP DA 23 24 25		BOX 1
	1. OR 1. US 2. DM 2. N 3. ROA 3. I 4. RC 4. SEC 5 RL							1. Smoo 2. Rough	th 1
	HAZARD CLAS	SIFICATION	1			MILE	POINT AT	HAZARD	7
8	Heard Identify Col		Offset Code 36 1. Right 2. Left or N	Grouping Number 37 38 ht Side Side Aerlian			42 43 44 45	Ending 46 47 48 49 50	BOX 2
٦	POINT HAZARI	ns						AND THE SUPPLIES OF VALUE	7
	Offset (fr)	,	Wadth (ft)		Longth (ft)		He-ght (m)	Depth (in)	BOX 3
	51 62 53	7(20)	54 55		56 57 58 59		60 61	62 63	
	LONGITUDINAL	HAZARDS	(Guard	rails, Brid	gerails, Barr	ier Wal	ls, and Cur	bs)	7
	Offset (h) Been 2 51 52 53	End	Top Hasphi (in)	Post Specing Po (fs) d at	Guardrail — Out Specing Bridge End Blockout	Rub Rad	Guardrari End 1 Beginning	Ending	BOX 4
				2.	Reduced 1 No. Not Reduced 2. Yes	2. Yes	Not Anchored (to gr Anchored (to gr Anchored Turndown Breekaway Terminal	ound or Bridge) (not breakaway)	
Γ	SLOPE HAZARD	S (Median	Ditches,	Roadside	Ditches, Fil	l Ditche	s, and Cut	Slopes)	7
	Hinge Foint Offset (ft) 3	Front Stope (antrope)	Frunt Slope Height (III)	Drich Wadth (fr)	Slope (average)	Beck Singe Height (ft)	Condition of Slopes	Depth of Water 63	BOX 5
							1 Smooth 2 Rough	1 None 2. Less than 2 ft 3 Greater than 2 ft	
8	DATI Ma Day VI	Hecommendation			7.75			IBM Card Type	BOX 6
	70 71 77 73 74 75							80	B

ROADSIDE HAZARD IMPROVEMENT FORM

NEBRASKA DEPARTMENT OF ROADS LINCOLN, NEBRASKA

improvement kecommended by		Dule
HIGHWAY Highmay	10 11 12 13 14	Hazard Number Hazard Group Number Improvement Alternative Number
COSTS Cears Costs (\$1,000) 15 16 17 18 19	Collision Maintenance (\$100/sccid) 20 21 22 23 24 25 Hazard Improvement	Normal Meintenanca (\$100/yr.) 26 27 28 29 Hazard Improvement
POINT HAZARD IMPROVEMENT	1. Remove 32 2. Make Breakaway and/or Relocate 3. Reconstruct Inlet to Safe Design 4. Reconstruct Cross Drainage System	
1 2 Install Traffic Barrier (complete Box A) 1 3 Install Energy Attenuator	Descriptor Code Descriptor Code Descriptor Code	34 35 36 37 Length (ft)
LONGITUDINAL HAZARD IMPRO 1 1 Curb 2 2 30 2 traffic flaring 2 31 Bridgeral	1 Hemove and Regrade 2 Install Wedge Modification 1 Hemove 32 2 Modify (complete Boxes A. B.& C) 3. Replace with New Design (complete	Boxes A, B & C) Descriptor Code New Design Only I Descriptor Code 33 34 Pescriptor Code
SLOPE IMPROVEMENTS 3	1 At Bridge 32 7 Not at Bridge From Stope Height Wolff: Shope (fr)	Heck Store Heapt Condition 11
NO IMPROVEMENT		
BOX A (TRAFFIC BARRIER MOD Officer	Post Specing Black I at Bridge Lot Out Heat 56 57 58 1. Refuced 1. No 1	Guardisal End Treatment Beginning Ending 59 No 1 Not Anchored (to ground or bridge) 2 Anchored (to ground or bridge) 3 Anchored Turndown (not breakway) 4 Breakway)
BOX B (CHANGES TO EXISTING	Change in Length (fr)	C (MILE POINT OF CHANGE)
1 Led of Group 79 2 Led of Group and Program		SM Card Type

Box 2 - Hazard Classification

The data in Box 2 is always punched. A discussion on the hazard number and grouping number will be presented later. A hazard is classified by the Identification and Descriptor Codes listed in Table 1. For example, a 300 ft. (0.057 mi) length of W-beam guardrail with strong wood posts and beginning at mile-post No. 3 would be written as shown below.

HAZARD Description	CLASSIFIC	ATION			MILE POINT	AT HAZARD
Huzard Number	Identification Code	Descriptor Code	Offert Code	Grouping Number	Beginning	Ending
0001	06	06	/	01	003000	003057
28 29 30 31	32 33	34 35	36	37 38	39 40 41 42 43 44	45 46 47 48 49 50
2.3			Right S Left Sic or Medi	de		

BOX

TABLE 1. HAZARD CLASSIFICATION

Identification Code	Descriptor Code
Ol. Utility Poles (wood)	01. Diameter less than 10 in.
	02. Diameter greater than 10 in.
02. Trees	01. Diameter less than 6 in.
	02. Diameter between 6 to 12 in.
	03. Diameter greater than 12 in.
03. Rigid Sign Supports	01. Single wood post (small size)
	02. Single wood post (large size)
	03. Single metal post
	04. Double wood posts (small size)
	05. Double wood post (large size)
	06. Double metal posts
	07. Triple metal posts
	08. Cantilever metal support
	09. Overhead sign supports
04. Rigid Base Luminaire Supports	Ol. Small Size
	02. Large size
05. Curbs	01. Mountable design
	02. Non-mountable design less than 10 in. high
	03. Barrier design greater than 10 in. high

TABLE 1. HAZARD CLASSIFICATION

Identification Code	Descriptor Code
06. Guardrails and Median Barriers	O1. Cable (2 strands on one side of post) O2. Cable (3 strands on one side of post) O3. Cable (1 strand on each side of post) O4. Cable (2 strands on each side of post) O5. W-Beam (weak steel posts) O6. W-Beam (strong wood posts) O7. W-Beam (strong steel posts) O8. Thrie-Beam O9. Box Beam (weak posts) 10. Concrete Median Barriers
07. Slopes	01. Ditches 02. Fill Slopes 03. Cut Slopes
08. Culverts	01. Headwall or exposed end of pipe 02. Gap between culverts in medians 03. Sloped culvert with grate 04. Sloped culvert without grate
09. Inlets	01. Raised drop inlet (tabletop)02. Depressed drop inlet03. Sloped inlet

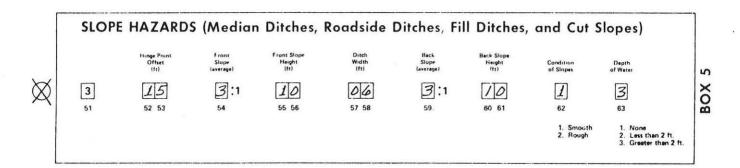
TABLE 1. HAZARD CLASSIFICATION

Identification Code	Descriptor Code
10. Roadway under bridge	01. Bridge piers
	02. Bridge abutment
11. Roadway over Bridge	01. Open gap between parallel bridges
	02. Closed gap between parallel bridges
	03. Elevated gore abutment
	04. Sidewalk or safety walks in front of bridgerail
12. Bridgerails	01. Rigid bridgerail smooth and continuous construction
	02. Semi-Rigid bridgerail smooth and continuous construction
	03. other bridgerail probable penetration, severe snagging and/or pocketing or vaulting
13. Retaining Wall	01. End exposed
	02. End shielded
14. Energy Attenuator	01. Rich Hydro Cells
	02. Fitch Barrier 8 Modules (11,900 lbs)
	03. " 9 " (12,300 lbs)
	04. " "10 " (12,700 lbs)
	05. " "12 " (13,100 lbs)
	06. " "15 " (17,700 lbs)

Box 3 - Point Hazard

A point hazard is a hazard of small dimensional measurements. Typical examples of point hazards are trees, utility poles, sign supports, and drainage inlet structures. Point hazards were not considered in this study. Additional subroutines would need to be developed in order to include point hazards.

Box 4 - Longitudinal Hazards


As indicated in Box 4, longitudinal hazards are hazards that have long dimensional measurements such as guardrails, bridgerails, barrier walls, and curbs. An "x" must be placed in the unmarked circle to the left of Box 4 to signal the key punch operator to punch the data in Box 4. Of the four hazards identified, this study included only roadside W-beam guardrail. The offset distance in Box 4 is the lateral distance from the edge of the traveled lane to the face of the W-beam guardrail. A typical W-beam guardrail located very close to the roadway with a standard height of 27 in., a non-standard post spacing of 12 ft-6 in., and unanchored ends would be coded as shown below. The length of guardrail would be coded in Box 2.

		AL HAZARE		000 T T T T T T T T T T T T T T T T T T		•			
ſ		(ft) End	Top Height (in)	Post Spacing (fi)	Post Spacing if at Bridge End	- Guardrail	Rub Rail	Guardrail En	d Treatment ———
2	04	04	27	12		1	1	1	1
51	52 53	54 55	56 57	58 59	60	61	62	63	64
					Reduced Not Reduce	1 No.	1. No 2. Yes	Not Anchored (to Anchored (to	ground or Brid ground or Brid

BOX 4

Box 5 - Slope Hazards

The only slope hazard identified in Box 5 that was not covered in this study is Cut Slopes. An "x" must be placed in the unmarked circle to the left of Box 5 to signal the key punch operator to punch the data in Box 5. The hinge point offset is defined as that point between the shoulder and front fill slope, or that point between slopes flatter than or equal to 6:1 and the front fill slope. A typical roadside ditch 10 ft. deep, with smooth side slopes of 3:1 and a 6 ft. bottom width carrying 4 ft. of water would be coded as shown below.

Box 6

The data in Box 6 must always be punched. This box includes the date, recommendations (provides additional clarification of hazard) and type of IBM card. The number 1 in column box 80 signals the computer program that it is reading data on the hazard inventory form.

Summary of Inventory Form

On the hazard inventory form, three basic types of hazards are identified-point hazards, longitudinal hazards, and slope hazards. These hazards are each identified in the same pre-marked column box, No. 51, as numbers 1, 2, and 3, respectively. This scheme is used in order that all the data for a hazard can be placed on one IBM card. Therefore, it is to be emphasized that the user can mark only one of the three type hazards on any one inventory coding form. The coding of multiple hazards of the same and/or different types all within a single group will be discussed later.

Roadside Hazard Improvement Form

The hazard improvement form shown in Figure 2 follows the same basic format as the hazard inventory form in Figure 1. The improvement form identifies three types of hazard improvements—point hazard improvements (Box 3); longitudinal hazard improvements (Box 4); and, slope improvements (Box 5). This format requires that the inventory form and improvement form be compatible; in other words, a hazard identified as a longitudinal hazard on the inventory form must have an improvement that corresponds to (1) a longitudinal hazard improvement (Box 4), or a no-improvement (Box 6). A no-improvement recommendation helps to minimize the working load of the user in that redundant data is not recorded again.

As before, the circles to the left of each box with a pre-marked "x" signal the key punch operator that the data in these boxes must always be typed, whereas, the user must place an "x" in one or more of the unmarked circles to signal the key punch operator to type the data in those boxes.

The types of improvements being made are identified on the computer output listing as an improvement code consisting of three single numbers contained in

column boxes 30, 31, and 32. For example, an improvement code of 2-2-1 in Box 4 shown below would identify a longitudinal traffic barrier in which the improvement would consist of removing the traffic barrier.

	LONG	GITUDINAL HAZARD I	MPROVEMEN	NTS		
0	30	1 31 Curb	32	Remove and Regrade Install Wedge Modification		A
X	2 30	2 Traffic Barrier	32	Remove Modify (complete Boxes A, B & C) Replace with New Design (complete Boxes A, B & C)	Descriptor Code (New Design Only)	A X X
0	2 30	3 Bridgerail	32	Modify Replace with New Design	33 34 Descriptor Code	

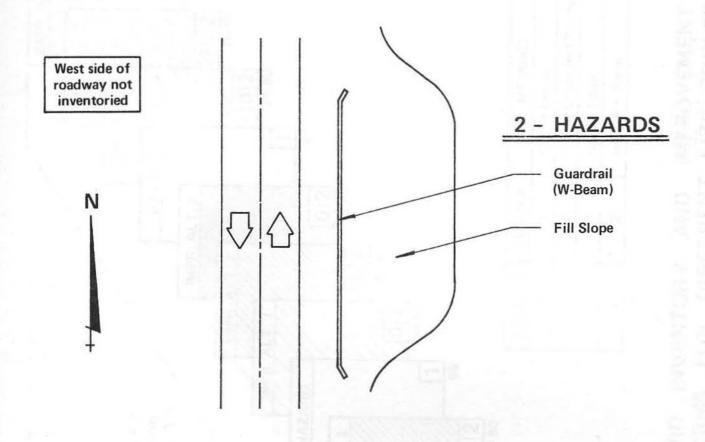
Point hazard improvements were not considered in this study. Also, there were two other improvements listed under the longitudinal improvement category (Box 4 above) that were not considered. Those improvements not included were curbs (code 2-1-x) and bridgerail (code 2-3-x). Additional subroutines would need to be developed to include these improvements.

A pre-marked number 2 in column 80 of Box 7 signals the computer program that it is reading data on the hazard improvement form. The meaning of the numbers 1 or 2 in column 79 will be discussed later.

Input Data Format

Referring back to Box 2 of the Hazard Inventory Form (Figure 1), it is necessary to define hazard number and grouping number. A group may consist of one single hazard or a multiple number of hazards. A group of hazards is defined as a condition in which all the hazards are located close together so that an

improvement of one hazard will effect the degree of hazardousness of the other hazards.


An example of two hazards in a group is shown in Figure 3. In this case, a guardrail (Hazard No. 1) is protecting a fill slope (Hazard No. 2). The hazard-index (injuries/yr) before making an improvement is the guardrail if one assumes that the impacting vehicle is redirected. Improvement Alternative No. 1 requires that the guardrail be removed, so that the hazard-index after the improvement is the fill slope. The reduction in the hazard-indices is a measure of the effectiveness. Case Study No. 2 shown in Figure 3 was a hypothetical case used for debugging the computer program. The input data and results of Case Study No. 2 are presented in Appendix J.

The input data arrangement of the hazard inventory and improvement coding forms for three different size groups is illustrated in Figure 4. Group No. 1 consists of one hazard and one improvement alternative; Group No. 2 consists of one hazard and two improvement alternatives; and, Group No. 3 consists of two hazards and three improvement alternatives. It is to be noted that for multiple hazard groups that each hazard must be followed by the same number of improvement alternative forms as shown in Group 3. The computer program as it now stands is capable of evaluating four improvement alternatives for a single hazard or a group containing two hazards with four improvement alternatives per hazard.

Multiple hazard groups with more than two hazards would require expansion of the program. An upper limit on the number of hazards per group would be fifteen.

Program Strategy

The computer program reads, operates, and prints the results for one group of data at a time. Referring to Group 3 in Figure 4, the computer reads the first

EXISTING ROADWAY

(2 Roadside Hazards)

ALTERNATIVE IMPROVEMENT	IMPROVEMENT
No. 1	Remove guardrail, and make no fill slope improvements.
No. 2	Shorten guardrail length, and modify fill slope.
No. 3	Shorten length and move guardrail laterally, and modify fill slope.
No. 4	Decrease guardrail post spacing, and make no fill slope improvements.

FIGURE 3. CASE STUDY NO. 2

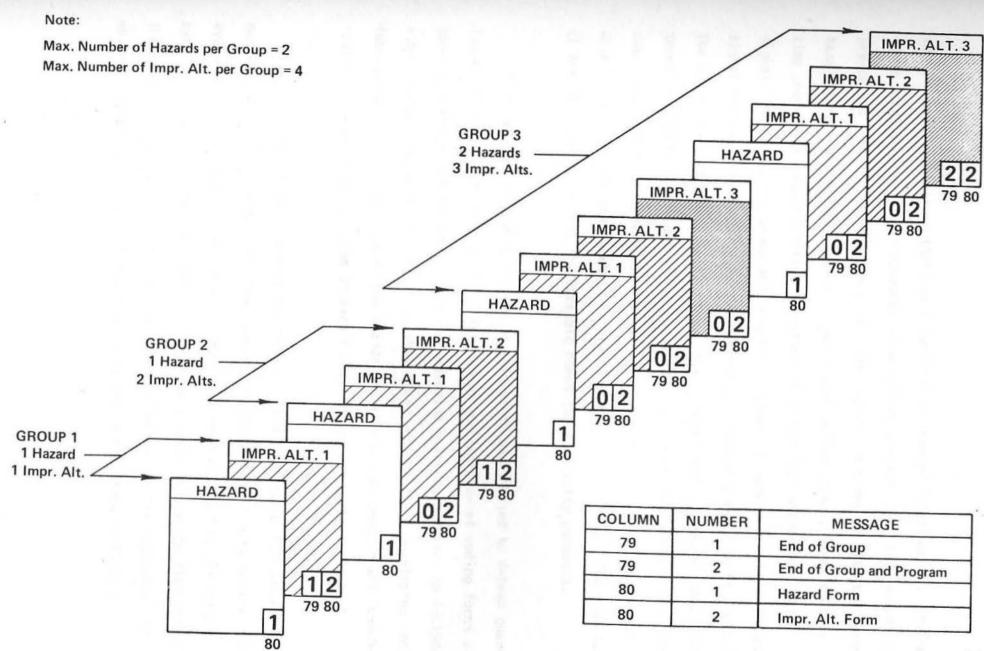


FIGURE 4. ARRANGEMENT OF HAZARD INVENTORY AND IMPROVEMENT ALTERNATIVE CODING FORMS FOR DIFFERENT SIZE GROUPS.

card as a hazard because there is a number 1 pre-marked in column 80. The next three cards are read as improvement alternatives because there is a number 2 pre-marked in column 80 of each card. The process is repeated with the second hazard card and the following three improvement alternatives, however, this time there is a number 2 marked in column 79 of the last improvement which signals the end of the group and program. A number 1 marked in column 79 would signal the end of a group only as illustrated by Groups 1 and 2 in Figure 4. The hazard inventory data is processed in a 1-dimensional array, whereas, the improvement alternative data is processed in a 2-dimensional array. The variable names assigned to the hazard inventory data (i.e., H2(I) and the improvement data (i.e., C12(I,J) are shown in Figures 5 and 6, respectively. The indicies (I and J) are omitted from the variable names for simplicity purposes.

The computer program developed in this study was limited to W-beam guardrail installed on roadside fill slopes. The hazard and improvement coding forms are general in scope and include all type of roadside hazards, however, to include other roadside hazards not covered in this study would require developing additional subroutines. The program as it now stands contains a main program and 16 subroutines. A brief description of each subroutine is contained in Table 2.

Because operation of a computer program requires precise data input, error messages were incorporated into the program to identify input data errors. To avoid program termination, which would occur for each data error, the program bypasses erroneous data and prints out an error message number and then continues. The error message number describes the source of error and the subroutine in which it occurred. A list of the error messages is contained in Table 3.

ROADSIDE HAZARD INVENTORY FORM

NEBRASKA DEPARTMENT OF ROADS LINCOLN, NEBRASKA

	Inventory Condi	ucted by			Date		
\otimes	HIGHWAY Highway Design Number 1 2 3 4 5 6 H60 H61 H62 H63 1. DR 1. US 2. DM 2. N 3. ROA 3. I 4. RC 4. SEC 5. RL	7 8 9 10 11 1	DT Lane Show Show Chi How Chi	### Surfacing Width (ft) (ft)	Des Grade of Cure UP DN 23 24 25 H8 H9 H10	Shoulder Condition Drop off Non-Pered (in) Shoulder 26 27 H11 H12 1. Smooth 2. Rough	BOX 1
\otimes	HAZARD CLASSI Description Hazard Identification Code 28 29 30 31 32 33 H13 H14		Offset Grouping Number H16 33 37 38 1. Right Side 2. Left Side or Median			AZARD Ending 47 48 49 50 H19	BOX 2
0	POINT HAZARDS OHNI (tr) 1 51 52 53 H22 H23	. w	idih iti	Length (ft) 56 57 58 59 H25	Height (In) 60 61 H26	Depth (in) Depth (in) 62 63 H27	BOX 3
	LONGITUDINAL I	Top End Feegh 54 55 54 55 H31 H32	Fost Spacing Post of at 8 Spac	Guardrail	Guardrail End Treet Beginning H36	Ending H38 64 d or Bridge) d or Bridge) t break away)	BOX 4
С	SLOPE HAZARDS Hings Point Offset (th) 3	Front Front Stope He (average) (1	Stope Ditch	Ditches, Fill Ditc Back Stope Isverrige1 11 59 H45 H46	hes, and Cut SI	Depth of Water H48 63 1. None 2. Less than 2 ft. 3. Grester than 2 ft.	BOX 5
\otimes	DATE Mo Day V, 70 71 72 73 74 75 H50 H51 H52	Recommendations				M Card Type 1 80 CARD	BOX 6

ROADSIDE HAZARD IMPROVEMENT FORM

NEBRASKA DEPARTMENT OF ROADS LINCOLN, NEBRASKA

Im	provemer	if Kecomm	ended by				Date		-
C60 []	C	C62 Highway Number 1. US C63 2. N 3. I 4. SEC	Design Speed (mph)	10 11	ADT 12 13 14 C9		Hazard Number Hazard Group Nun Improxement Alter		- XX
Capita	OSTS al Costs (\$1,000) 16 17 18 19 C4			C5 Collision Mail 20 21 22 Hazard	C6 Interience (\$100/socid. 23 24 2			C7 Normal Maintenence (\$100/y 26 27 28 24 Hazard Improven	, Z
PO 11 30 C10	1 AI	ARD IMPR	OVEMENT	32	3. Reconstruct I	vay and/or Relocate nlet to Safe Design ross Drainage Syste			
30	31 (cc	12 stall Traffic Barrier complete Boxes A, B & 12 stell Energy Attenuato		32 33	C13 Descriptor Code C13 Descriptor Code			C14 Length (ft) .	- SOR
2 (30)		NAL HAZA 12 12 effic Berrier 12 köpersil	RD IMPRO		C13 1. Remove and R 2. Install Wedge I C13 1. Remove 2. Modify (comp	Nodification	2) ete Boxes A, B & C)	C14 Descriptor Code (New Design Onl C14 Descriptor Code	BOX 4
SL(C10 1	ify 32 33	Front Stope (average)	32 Front Slope Height (tt) 35 36	CI 3 1. At Bridge 2. Not at Bridge Ditch Width (ft) 37 38	Back Slope (average) 39 C18	Back Stops Height (m)	Condition of Slopes Condition of Slopes Can C20 C21 42 43 C21 1. Smooth 1. None	BOX 5
72-2-20	D IMPROV	C22 YEMENT	C15	C16	C17		C19	2. Rough 2. Less than 3. Greeter th	2 ft. en 2 ft. 9 XOB
BO Bopin 48 41	Offset (ft) End	FFIC BARR Top Height (in) 52 53 C27	Post Specing (h) 54 55 C28	Port if at E	Specing Biridge End C	C30 [58 59 1. No 1. No 2. Yes 2. A 3. A	Guardrail End Treatment C32 C33 60 dot Anchored (to ground or bridge) Inchored Turndown (not breakaway) reakaway Frankaway	BOX
Beginning		ANGES TO	EXISTING C41 1. Lengthen 2. Shorten			Š	C (MILE F Beginning C45 36 67 68 69 70	POINT OF CHANG Ending C46	
	End of Group End of Group ar		,			[2] 80 ICAR	IBM Card Type	2	ox 7

TABLE 2. DESCRIPTION OF SUBROUTINES

Subrouti Name	Subroutine Description
MAIN 1	Main subroutine that links nearly all subroutines
RESULT	Subroutine calculates cost-effectiveness, zero accident reduction, and benefit-cost
IMPCST	Subroutine calculates capital recovery factor and annualized first costs
OUTPUT	Subroutine prints listing of computer output
FREQ	Subroutine calculates the encroachment frequency of a specified roadway design
PROB 1	Subroutine calculates lateral offset probabilities for 5 different encroachment angles. If the front slope is steep (2:1 or 3:1) it is a certainty a vehicle will impact ditch bottom, therefore, the probability of reaching the hinge point is assigned. For 4:1 and flatter front slopes the probability of reaching the ditch bottom is assigned.
HINDEX	Subroutine calculates "average" hazard-index taking into consideration all possible combinations of encroachment speed and angle.
PROB 2	Subroutine assigns impact condition probabilities for a specified roadway design taking into consideration all possible combinations of encroachment speed and angle.
WBEAM	Subroutine calculates severity-indicies of standard size automobile impacting a standard W-beam guardrail under all possible combinations of encroachment speed and angle. (BARRIER VII computer model used to generate severity-index equations). Adjustment factors used for guardrail with 12 ft-6 in. post spacings.
PROB 3	Subroutine calculates the probability of an injury for a specified severity-index
DATA	Subroutine reads and stores hazard inventory data and hazard improvement data in groups
SLOPE	Subroutine calculates severity-indicies of standard size automobile traversing various embankment configurations (combinations of front slope angle, front slope height, ditch width, and back slope angle) under all possible combinations of encroachment speed and angle. (HVOSM computer model used to generate severity-index equations).
COST 3	Subroutine calculates injury accident cost for a specified severity-index

TABLE 2. DESCRIPTION OF SUBROUTINES

Subroutir Name	e Subroutine Description									
REPAIR	Subroutine calculates "average" collision maintenance cost for W-beam guardrail taking into consideration all possible combinations of encroachment speed and angle. (Length of guardrail damage expressed as function of severity-index).									
ACCID	Subroutine calculates "average" injury accident cost taking into consideration all possible combinations of encroachment speed and angle.									
NOIMPR	No improvement subroutine. Subroutine sets improvement data equal to hazard inventory data.									

TABLE 3. ERROR MESSAGES

No.	Message	Subroutine
1 2 3 4 5		
3		
4		DD00 7
5	Lateral Offset Limits Violated	PROB 1
0		
8		
6 7 8 9		
	Program Valid only for Slope and W-Beam Type Hazard	MAIN 1
11		
12		
13 14		
15	Undefined Highway Design Number	PROB 2
16	The state of the s	
17		
18		
19	Undefined Event Slope	SLOPE
20	Undefined Front Slope Undefined Back Slope	SLOPE
22	Undefined Front Slope Height	SLOPE
23	Undefined Back Slope Height	SLOPE
24		
25 26		
26 27		
28		
29		
30		

Output Data Format

The output format of the computer program is illustrated in Figure 7 for Case Study No. 2. The plan view of the case study site was shown in Figure 3. The site has two hazards in which a guardrail (hazard 1) is protecting a fill slope (hazard 2). The four improvement alternatives being considered for this case study were outlined in Figure 3.

Page 1 of the output in Figure 7 contains general information on the highway design number (see NDR Minimum Design Standards, ref $\underline{3}$), type highway, design speed, ADT, project life, compound interest rate, and the date. If any one of these first four items changes, then this block of information is reprinted starting on a new page.

Page 2 of the output in Figure 7 contains information on both the hazard and improvement. The Identification and Descriptor Codes (see Table 1) define the type hazard, whereas, the Improvement Code defines the type improvement. An indepth discussion on the definitions of hazard-index, cost-effectiveness, zero accident reduction, and benefit-cost ratio are presented later in the report.

Improvement Alternatives 1, 2, and 4 were not cost-effective because in each case there was no net reduction in the number of injuries per year (summation of the hazard-indicies of improvements were greater than the summation of hazard-indicies of the hazards).

Improvement Alternative 3 resulted in an error message because of an invalid type hazard (see Table 3 for a list of the error messages).

COST EFFECTIVENESS PROGRAM

UNIVERSITY OF NEBRASKA AND NEBRASKA DEPARTMENT OF ROADS

HIGHWAY DESIGN NUMBER = DR- 7
TYPE HIGHWAY = US-123
DESIGN SPEED = 60 MPH
ADT = 1234
PROJECT LIFE = 20.0 YRS
INTEREST RATE = 9.000 %
DATE = 9- 6-79

PAGE = 3

			H	A	Z	A	R	D					I		M	P	R	0	¥	E	Ħ		E	N	T	
HAZA RD	GROUP	ICENT			INDE		IDE OF	MILE-	POSI	IMI	PR	IN PR CODE	HAZARD	- 1	CLEAR	Barrer C		RST		TAL NUAL		OS	TIV	E A	ZERO	BENEFIT
				(1	NJ/Y		OAD	BEG	END				(INJ/YR)		ZONI (FT)		(\$1	000)		OST /YR)	V	AL	UE.	I	REDUCTION (%)	RATIO
2	2	6	6	٥.	0149	4	1	50.100	50-250		1	2-2-1	0.00000		6			2.4	***	***	****	**	**G	ROU	JP*****	*******
3	2	6 7	6		.00000		1	50.100	50.250	•	1	4-0-0	0.01784		6			0.0			NC	T	cos	T-I	EFFECTIVE	E
2	2	6	6	0.	0149	4	1	50-100	50.250		2	2-2-2	0.01355		7			0.5	***	****	****	***	**G	ROL	JP*****	******
3	2	6 7	2		.0000		1	50.100	50.250		2	3-2-0	0.01610		8			2.5			NC	T	cos	T-1	BFFECTIV	E
2	2	6	4	٥	0149		1	50.100	50.250		2	2-2-2	0.01243		10			1 0	***	****	****	***	***	POI	1D*****	*******
3	2	6 7	2	0.	0149	0	1	50.100	50.250		3	2-2-0	0.00000		0											0******
2	2	6	6	0.	.0149	4	1	50.100	50.250	1	4	2-2-3	0.00000		10			13.5	***	****	***	***	***G	ROI	JP*****	******
3	2	7	2	0.	.0000	0	1	50.100	50.250		4	3-2-0	0.01517		10			1.5			N	T	cos	T-	EFFECTIV	E

COMPUTER MODELS OF AUTOMOBILE

During the past three decades, many highway organizations have relied heavily upon experience and judgment in the design of roadside appurtenances; and, trial and error full scale tests were often conducted to determine the feasibility of these appurtenances. Significant advancements in technology and an increase in safety have evolved from these efforts. However, this type of design approach appears to be insufficient by itself because one or more full scale tests were required to effectively evaluate the influence of any one variable. Conducting many full scale tests can be both time consuming and costly.

Mathematical model simulation provides a rapid and economical method to investigate the many variables involved in a run-off-the-road automobile collision or maneuver. A limited number of full scale tests can then be conducted to confirm the simulation results. When supplemented by experience, judgment and tests, model simulation can be a very helpful tool in achieving efficient and safe designs.

HVOSM

The Highway-Object-Simulation-Model, designated as HVOSM, was used in the subsequent work to study the dynamic motion of a standard size automobile traversing different embankment configurations. HVOSM was developed by McHenry $(\underline{4},\underline{5})$ of the Cornell Aeronautical Laboratories and modified for specific field applications by the Texas Transportation Institute (6).

The idealized-free-body-diagram of HVOSM is shown in Figure 8. The model has 11 degrees of freedom and consists of four isolated masses. The masses of

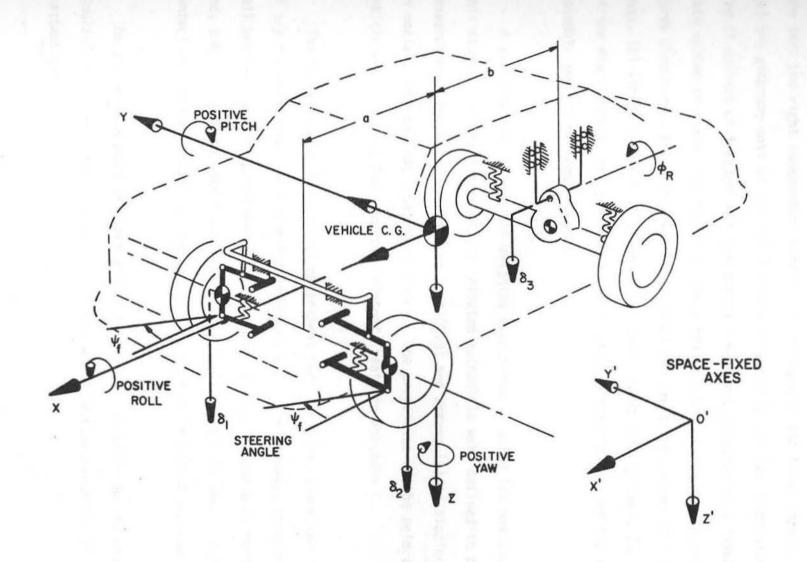


FIGURE 8 : IDEALIZATION OF HVOSM

the automobile include: (a) the sprung mass of the body, engine and transmission supported by the front and rear suspension system, (b) the unsprung masses of the left and right independent suspensions systems of the front wheels, and (c) the unsprung mass of the solid rear axle assembly and its suspension system. The 11 degrees of freedom of the automobile measured relative to a fixed coordinate system in space include: (a) linear translations of the sprung mass in three directions, (b) rotational roll, pitch and yaw translations of the sprung mass, (c) linear translation of the front wheel suspension systems, (d) steering of the front wheels, and (e) linear and rotational translations of the rear axle assembly and its suspension system.

A standard size automobile weighing approximately 3,800 lbs was used in this study. The properties of the selected automobile were defined in previous research work conducted by Ross and Post (7,8) and Weaver (9) on sloping grates in medians and roadside embankment slopes. The properties of the selected vehicle are listed on the computer printout sheets in Appendix C.

The terrain data of a typical embankment configuration, expressed in terms of x-y-z coordinates, are presented in Appendix D. The roadway, shoulder, and soil were assigned friction coefficient values of 0.8, 0.6 and 0.2, respectively; and, the soil was assigned a stiffness value of 4,000 lbs per inch. Terrain contact was only monitored at the two corners of both the front and rear bumpers.

No attempt was made to steer and/or brake the automobile during any of the simulations. This "free-wheeling" condition would be representative of an inattentive driver.

The Texas Transportation Institute's (6) modified version of the HVOSM program was used in this study. On the average, 1 sec of event time required

approximately 1 min of time on the University of Nebraska IBM 370 computer system. Computer costs per simulation ranged from 10 to 20 dollars. In comparison, full scale tests range from 5,000 to 15,000 dollars depending on the repetitiveness of the tests, vehicle control apparatus, type and amount of electronic instrumentation, and data reduction analysis techniques including high speed photography.

HVOSM has undergone many rigorous comparisions to full-scale testing with excellent correlation. An example of such a comparison is shown in Figure 9 in which Ross and Post (7) compared the decelerations computed by HVOSM with the decelerations measured by accelerometers during a full scale test on an embankment simulation runs in this study.

BARRIER VII

The BARRIER VII program was utilized subsequently in this study to determine the dynamic effect of an automobile interacting with a traffic barrier system. BARRIER VII was developed by Powell $(\underline{10}, \underline{11})$.

The traffic barrier is idealized as a plane framework composed of elastic-inelastic one-dimensional elements of a variety of types. The automobile is idealized as a plane rigid body surrounded by a cushion of springs. A large displacement dynamic structural analysis problem is solved by numerical methods.

The analysis is two-dimensional in the horizontal plane. Out-of-plane effects, which include vertical displacements of both the automobile and the barrier, are not considered. The automobile slides along the barrier, and the effects of normal, force, friction forces, and wheel drag forces are considered

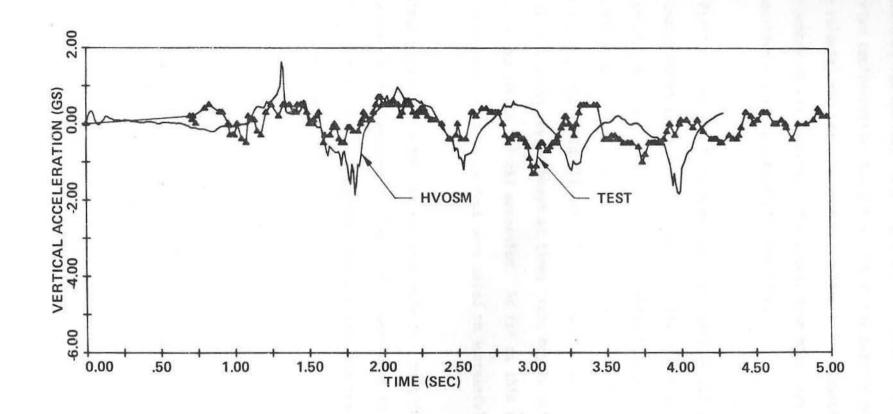


FIGURE 9. COMPARISON OF HVOSM AND FULL SCALE TEST ON EMBANKMENT WITH 3:1 FRONT SLOPE

in determining its motion. Data necessary for input to the program consists of the barrier configuration, the properties of the barrier members and automobile and the velocity and trajectory of automobile before impact. Output consists of barrier member forces, barrier deflections, time histories of automobile positions, and velocities and acceleration of automobile.

A final comment should be made about the BARRIER VII program. It is a two dimensional program and therefore placed limitations on this study. BARRIER VII cannot predict roll motion of the vehicle, wheel snagging or vehicle vaulting. BARRIER VII also will not predict situations where the vehicle could break through the guardrail. In all BARRIER VII simulations, the railing will return to the elastic state, even though at times these may be sufficient plastic hinges formed so as to create a local mechanism. As far as this study was concerned, all the guardrail performance runs were based on successful guardrail tests.

Output results from BARRIER VII that were of direct interest in this study were the vehicle accelerations. These values were used to determine the severity-index (SI) of the different guardrail vehicle interactions. Explanation of SI follows in the report.

SEVERITY OF AUTOMOBILE ENCROACHMENTS

The severity of an automobile impacting a guardrail or traversing an embankment ditch configuration was expressed in terms of a Severity-Index. The severity-index is computed as the ratio of the measured or computed resultant automobile acceleration to the resultant "tolerable" automobile acceleration that defines an ellipsoidal surface. This ratio can be expressed mathematically by Eq. 1.

An in-depth discussion on the development of Eq. 1 was presented by Ross and Post (12) and Weaver (9).

$$SI = \frac{G_{total \ Auto}}{G_{total \ Occupant}} = \sqrt{\left[\frac{G_{long}}{G_{\chi L}}\right]^2 + \left[\frac{G_{lat}}{G_{\gamma L}}\right]^2 + \left[\frac{G_{vert}}{G_{ZL}}\right]^2}$$

where:

---Eq. 1

SI = Severity-Index

Gtotal Auto = Resultant Auto Acceleration

Gtotal Occupant = Resultant Tolerable Acceleration

Glong = Auto Acceleration along longitudinal x-axis (see Figure 3)

Glat = Auto Acceleration along lateral y-axis

Gvert = Auto Acceleration along vertical z-axis

GXL = Tolerable Acceleration along x-axis

GYL = Tolerable Acceleration along y-axis

GZL = Tolerable Acceleration along z-axis

The severity-index computations in the subsequent work will be based on accelerations tolerable to an unrestrained occupant, and the automobile accelerations will be averaged over a time duration of 50 msec. The relationship between severity-index and injury levels will be discussed in a later section. Tolerable accelerations suggested by Weaver $(\underline{9})$ for use in the severity-index equation are shown in Table 4.

TABLE 4
TOLERABLE AUTOMOBILE ACCELERATIONS

	Accelerations				
Degree of Occupant Restraint	G _{YL}	GXL	GZL		
Unrestrained	5	7	6		
Lap Belt Only	9	12	10		
Lap Belt and Shoulder Harness	15	20	17		

Severity-Index Equations for Embankments

A typical graph of a plot of the computed severity-indicies versus encroachment speed and angle is shown in Figure 10 for a front fill slope of 2:1, a fill height of 20 ft., a ditch width of 4 ft, and a back slope of 2:1. Linear regression lines were fitted to the data point using the method of least squares.

Because no HVOSM simulations were made for 10 and 20 deg encroachment traversals, the lines shown in Figure 10 for these two conditions were fitted by visual means. Likewise, all of the linear lines were simply extended to cover the lower and upper speed ranges of 40 and 80 mph which were not simulated in this study.

A total of 180 linear equations were derived in this study to cover all possible embankment configurations and vehicle speed and angle combinations.

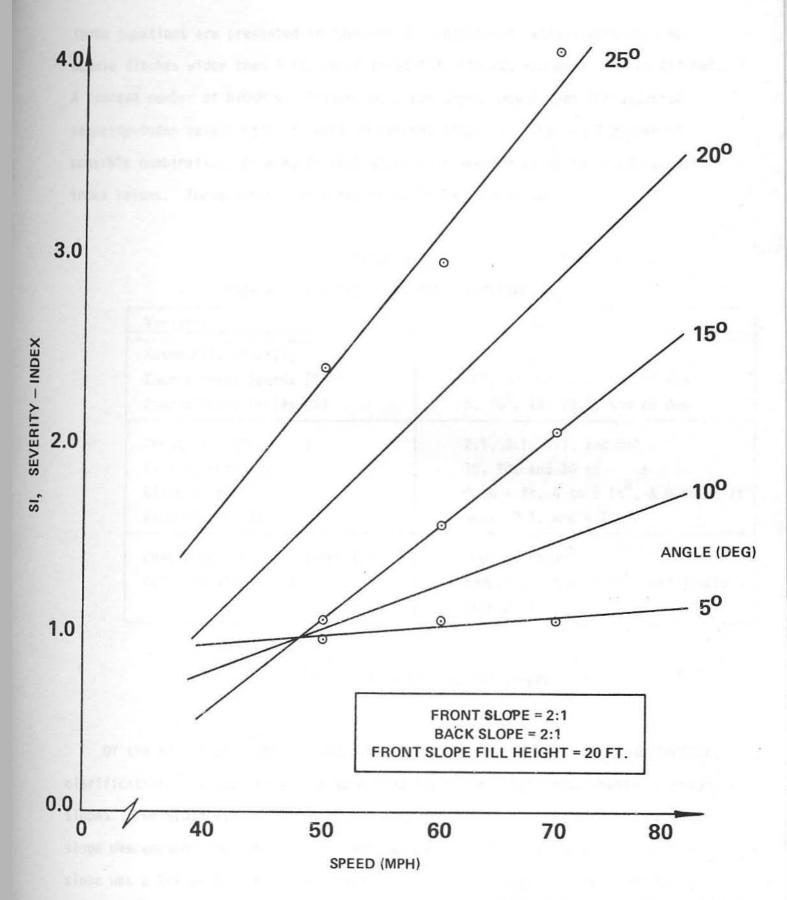


FIGURE 10. RELATIONSHIP BETWEEN SEVERITY — INDEX AND VEHICLE ENCROACHMENT CONDITIONS AND FILL SLOPE CONFIGURATION.

These equations are presented in Appendix F. Adjustment factors were used to handle ditches wider than 4 ft, rough front fill slopes, and water in the ditches. A limited number of HVOSM simulations were run which showed that the adjusted severity-index values were at least 90 percent accurate. The total number of possible combinations covered in this study is therefore equal to 16,200 severity-index values. These combinations are shown in Table 5 below.

TABLE 5

MATRIX OF VEHICLE EMBANKMENT TRAVERSALS

Variable	Combinations
Automobile Size (1) Encroachment Speeds (5) Encroachment Angles (5)	3,800 lbs 40 ^a , 50, 60, 70, and 80 ^a mph 5, 10 ^a , 15, 20, and 25 deg
Front Fill Slopes (4) Fill Heights (3) Ditch Widths (3) Back Slopes (3)	2:1, 3:1, 4:1, and 6:1 10, 20, and 30 ft 0 to 4 ft, 4 to 8 ft ^b , & 8 to 12 ft ^b None, 2:1, and 4:1
Conditions of Front Slope (2) Water in ditches (3)	smooth, rough ^b none, less than 2 ft ^b , and greater than 2 ft ^b

- a. Interpolated
- b. Adjustment Factor
- c. Flat (no back slope) or trapezoidal shaped

Of the adjustment factors used, the situation for rough slopes needs further clarification. Two possibilities were used for slope conditions, smooth or rough slopes. The HVOSM simulations were run only on the smooth condition. If a rough slope was encountered, the program then examined the front slope angle. If the slope was a 2:1 or 3:1, then the rough slopes were not adjusted for severity-indices. If, however, the front slopes were flatter, then an adjustment factor

was added to the SI to increase the value. The reasoning behind this is that when a vehicle encroaches a steep front slope, there is a high probability that it will reach the ditch bottom and undergo high decelerations. However, if the front slope is 4:1 or 6:1, it is likely that a vehicle could be steered back toward the road and avoid the ditch bottom. In this case, the vehicle will undergo higher decelerations on a rough slope than on a smooth slope.

The data reduction and results of the HVOSM simulations of a vehicle traversing different embankment configurations are presented in Appendix E.

Severity-Index Equations for Guardrail

The BARRIER VII (10, 11) computer program was used to obtain the severity index equations for an automobile impacting a guardrail. It was necessary to specify input values for the wooden post, W-Beam rail, and vehicle inertial properties. The values for those parameters were obtained primarily from the work of Southwest Research Institute (20) in which BARRIER VII results were correlated with similar full-scale tests.

A severity index adjustment factor was built into the program to adjust the severity of a vehicle impact on a 12'-6" post spacing in addition to the 6'-3" post spacing design. These severity index equations and the SI adjustment factors are presented in Appendix H.

COST-EFFECTIVENESS METHODOLOGY

The cost-effectiveness of an improvement alternative is its annualized cost per unit of improvement (effectiveness) it provides. In general, the lower this cost, the more cost-effective the alternative.

The method used by the computer program to calculate the cost-effectiveness of improvement alternatives was derived from the cost-effectiveness priority approach formulated by $\operatorname{Glennon}(\underline{13})$ and implemented in Texas in the management of roadside safety improvement programs on both freeways and non-controlled access roadways($\underline{1}$). With this approach, the effectiveness of an improvement alternative is measured in terms of the number of injury (fatal and non-fatal) accidents that it can be expected to eliminate each year. The expected annual reduction in injury accidents attributed to a particular improvement is the difference between the expected number of injury accidents per year under the existing condition and the number of injury accidents expected per year after the improvement has been made. In each case, before and after improvement, the expected number of injury accidents per year is referred to as the hazard index. Therefore, the measure of effectiveness of given improvement alternative is the difference between the hazard index before and after the improvement.

Thus, the computer program calculates the cost-effectiveness of an improvement alternative as follows:

$$CE = \frac{C_I - C_E}{H_E - H_I}$$
 ---Eq. 2

where:

CE = cost-effectiveness of improvement, cost to reduce one injury
 accident (dollars/injury accident reduced);

C_I = annualized cost of improvement (dollars/year);

- C_F = annualized cost of existing condition (dollars/year);
- H_E = hazard index of existing condition (expected number of injury accidents/year);
- $H_{
 m I}$ = hazard index of improvement (expected number of injury accidents/ year).

The annualized cost of the improvement alternative includes normal and collision maintenance costs as well as the first cost of the improvement. The annualized cost of the existing condition is cost of maintaining it, which includes both normal and collision maintenance costs.

In evaluating the cost-effectiveness of improvement alternatives, the computer program considers any alternative which does not have a hazard index lower than that of the existing condition (i.e., $H_{I} \geq H_{E}$) to be "not cost-effective". Therefore, in such cases, the program merely prints out the message "NOT COST-EFFECTIVE", instead of the cost-effectiveness value. However, in the case of an improvement alternative which does have a hazard index lower than that of the existing condition (i.e., $H_{\rm I}$ < $H_{\rm F}$), and which is therefore considered to be cost-effective, the program prints out the cost-effectiveness value computed for the alternative. For a cost-effective improvement alternative (i.e., H_{I} < H_{F}), the lower its cost-effectiveness value, the more cost-effective it is. This interpretation also applies to negative cost-effectiveness values, because in the case of a cost-effective improvement alternative a negative value indicates that its annualized cost is less than that of the existing condition (i.e., $C_{\rm I}$ < $C_{\rm E}$). Thus, an alternative which has a negative cost-effectiveness value is more costeffective than one with a positive value, given that both are cost-effective.

A description of the procedures used by the computer program to calculate hazard indices and annualized cost follows.

Hazard Index

The generalized equation used to compute the hazard index of an improvement alternative, or existing condition, is:

$$H = E \sum_{\Theta} P_{\Theta}(C/E) \sum_{\mathbf{v}} P_{\Theta,\mathbf{v}} P_{\Theta,\mathbf{v}} (I/C) \qquad ---Eq. 3$$

where:

H = hazard index (expected number of injury accidents/year);

E = encroachment rate (number of roadside encroachments/mile/year);

 $P_{\Theta}(C/E)$ = probability that the improvement, or existing condition, will be encountered given that an encroachment at angle Θ has occurred;

 $P_{\Theta,V}$ = probability of an encroachment at angle Θ and speed V given that an encroachment has occurred;

 $P_{\Theta,V}(I/C)$ = probability of an injury accident given that the improvement, or existing condition, has been encountered by a vehicle encroachment at angle Θ and speed V;

⊖ = angle of encroachment (degrees);

v = speed of encroachment (miles/hour).

The method by which each of the independent variables in this equation is computed is described below.

Encroachment Rate

Knowledge of the rate at which vehicles encroach on the roadside of various types of highways is very limited. In fact the only pure encroachment data available are that of Hutchinson and Kennedy $(\underline{14})$, which were collected on freeway medians. More recently Glennon $(\underline{15})$ has estimated

encroachment rates for different types of highways as linear functions of average daily traffic (ADT). These relationships were derived from an analysis of roadside accident rates for different types of highways and a comparison of the freeway encroachment rate determined by Hutchinson and Kennedy and the freeway roadside accident rate in Missouri.

Therefore, because they are the only ones available for different highway types, the encroachment-rate-versus-ADT relationships determined by Glennon are used by the computer program to compute the encroachment rate to be used in Equation 3 to calculate the hazard index of an improvement alternative, or existing condition. The appropriate relationship is first selected based on the highway type which corresponds to the highway design number input on the Roadway Hazard Inventory Form (Figure 1) in the case of an existing condition or on the Roadway Hazard Improvement Form (Figure 2) in the case of an improvement alternative. The encroachment rate is then computed using the selected encroachment rate function and the ADT input on the same form as the highway design number. The encroachment rate function for each highway type and design number is shown in Table 6. It should be noted that the number of encroachments is the total for both directions of traffic. Therefore, if only one side of a highway is being considered, this number is divided by two.

Probability of Encounter

The probability that a vehicle which encroaches on the roadside will encounter (i.e., collide with or traverse) the improvement alternative, or existing condition, is dependent on the angle of encroachment. This probability is the product of two other conditional probabilities expressed as follows:

TABLE 6. ENCROACHMENT RATE VS ADT RELATIONSHIPS

Highway Design Number	Highway Type	Encroachment Rate (encroachments/mile/year			
DR 1	Rural Interstate	0.0009 ADT			
DR 2	Rural Multilane	0.00059 ADT			
DR 3	Divided Highway	0.00059 ADT			
DR 4	Wide Rural	0.000742 ADT			
DR 5	Two-Lane Highway	0.000742 ADT			
DR 6	(Roadbed <u>></u> 36 ft.)	0.000742 ADT			
DR 7	Narrow Rural Two-Lane Highway (Roadbed < 36 ft.)	0.00121 ADT			
DM 10	Urban Interstate	0.0009 ADT			
DM 20		0.0009 ADT			
DM 30	Urban Multilane	0.0009 ADT			
DM 40	Divided Highway	0.0009 ADT			
DM 50	Urɓan Major Arterial	0.00133 ADT			
DM 60	Street	0.00133 ADT			

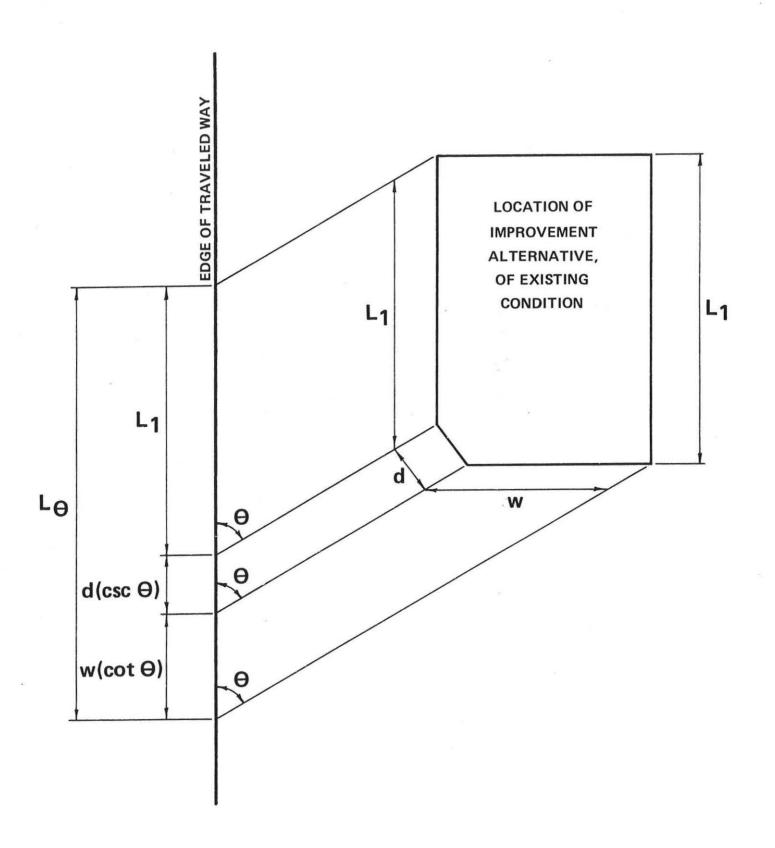


FIGURE 11. LOCATION OF IMPROVEMENT ALTERNATIVE AND ITS RELATIONSHIP TO PATH OF ENCROACHING VEHICLE

$$P_{\Theta}(C/E) = P_{\Theta}(X/E) P_{\Theta}(C/X)$$
 ---Eq. 4

where:

 $P_{\odot}(\text{C/E})$ = probability of encounter given an encroachment at angle \odot ;

- $P_{\Theta}(X/E)$ = probability that path of vehicle will intersect location of improvement alternative, or existing condition, given an encroachment at angle Θ ;
- $P_{\Theta}(C/X)$ = probability of vehicle impacting, or traversing, improvement alternative, or existing condition, given that vehicle is on an intersecting path for an encroachment of angle Θ .

The probability that an encroaching vehicle will be on a path that intersects the location of the improvement alternative, or existing condition, is proportional to the longitudinal length of roadway within which this can occur. As illustrated in Figure 11, this longitudinal length is a function of the angle of encroachment, the width of the vehicle, and the longitudinal length and lateral width of the location of the improvement alternative, or existing condition. This relationship is defined by the following equation:

$$L_{\Theta} = L_1 + d (\csc \Theta) + w (\cot \Theta)$$
 ---Eq. 5

where:

- L_{\odot} = longitudinal length of roadway within which the path of a vehicle encroachment at angle Θ will intersect the location of the improvement alternative, or existing condition (feet);
- w = lateral width of location of improvement alternative, or existing condition (feet);

d = width of encroaching vehicle (feet);

Θ = encroachment angle (degrees).

Due to a lack of data on the effects of roadway geometrics on the frequency and nature of encroachments, it is assumed that the longitudinal distribution of encroachments along a roadway is uniform. Therefore, the probability that a vehicle encroachment at angle Θ will be on a path that intersects the location of the improvement alternative, or existing condition is:

$$P_{\odot}(X/E) = L_{\odot}/5,280$$
 ---Eq. 6

The constant term in this equation is the number of feet in a mile.

The probability that an encroaching vehicle on an intersecting path will impact, or traverse, the improvement alternative, or existing condition, is a function of the lateral distance between the outside edge of the travelled way and the location of the improvement alternative, or existing condition. The greater this distance, the further the vehicle must travel along the path to reach the location and the less likely it is that it will impact, or traverse, the improvement alternative, or existing condition. Therefore, the encroachment data of Hutchinson and Kennedy (14) were analyzed to determine the relationship between encroachment angle and the probability distribution of the lateral extent of encroachment. The four distributions shown in Figure 12 were found to be significantly different. These distributions are used by the computer program to determine the probability of impacting, or traversing, the improvement alternative, or existing condition, given that the encroaching vehicle is on an intersecting path for a given angle of encroachment; because this probability is equal to the probability that the lateral extent of the encroachment is greater than the lateral distance between the outside edge of the travelled way and the location of the improvement alternative, or existing condition.

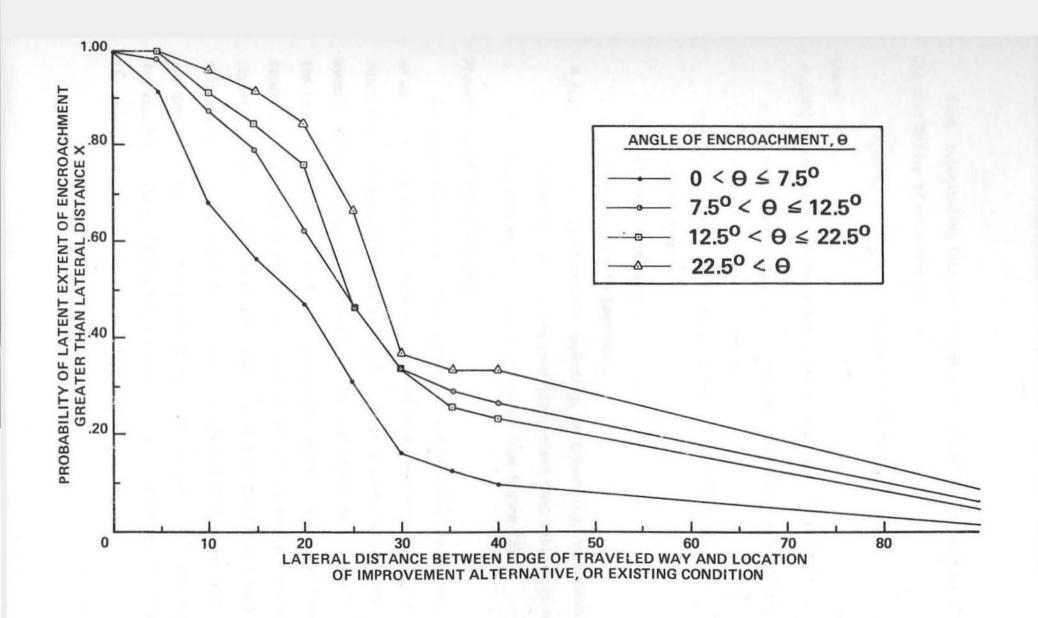


FIGURE 12. DISTRIBUTIONS OF LATERAL EXTENT OF ENCROACHMENTS

Thus, substituting Equations 5 and 6 into Equation 4, the equation for the probability of encounter becomes:

$$P_{\Theta}(C/E) = (\frac{1}{5,280})[L_1 + d (csc \Theta) + w (cot \Theta)] P_{\Theta}(C/X)$$
 --- Eq. 7

where:

 $P_{\Theta}(C/E)$ = probability of encounter given an encroachment at angle Θ ;

w = lateral width of location of improvement alternative, or existing condition (feet);

d = width of encroaching vehicle (feet);

⊖ = encroachment angle (degrees);

 $P_{\Theta}(C/X)$ = probability of vehicle impacting, or traversing, improvement alternative, or existing condition, given that vehicle is on an encroachment at angle Θ (obtained from Figure 12).

Probability of Injury Accident

The probability of an injury accident given that the improvement alternative, or existing condition, has been encountered by an encroaching vehicle is a function of the severity index of the impact, or traversal. In turn, the severity index depends on the speed and angle of encroachment as well as the type and configuration of the improvement alternative, or existing condition, impacted, or traversed. As described in a previous section of this report, computer simulation models (i.e., HVOSM and BARRIER VII) were used in this research to determine the severities indices of side-slope-ditch traversals and guardrail impacts over a range of encroachment speed-angle combinations. The results of these simulations are used by the computer program to determine the severity indices of impacts and traversals.

In earlier research conducted at the University of Nebraska-Lincoln $(\underline{16})$, a relationship between severity index and probability of an injury accident was developed. This relationship is presented in Table 7. To facilitate its use in the computer program, the histogram relationship is approximated by the two linear functions shown in Figure 13.

TABLE 7. RELATIONSHIP BETWEEN SEVERITY-INDEX
AND PROBABILITY OF INJURY ACCIDENTS

Severity-Index (SI)	Probability of Injury Accident
SI <u><</u> 0.5	0.1
$0.5 < SI \le 1.0$	0.3
1.0 < SI <u><</u> 1.5	0.5
1.5 < SI ≤ 2.0	0.7
2.0 < SI <u><</u> 2.5	0.8
2.5 < SI	1.0

Encroachment Speed-Angle Probabilities

The probabilities of encroachment speed-angle combinations were computed by combining the distributions of vehicle speeds and encroachment angles. The vehicle speed distributions were determined from an analysis of spot speed data contained in the 1978 annual speed monitoring certification report prepared by the Nebraska Department of Roads. It was assumed that vehicle speeds are normally distributed with the mean and standard deviation values computed from the spot speed data. These values are shown in Table 8. The

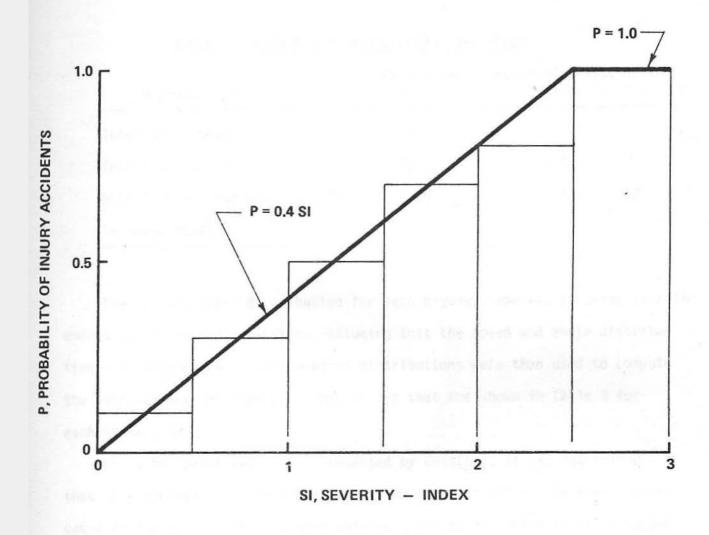


FIGURE 13. RELATIONSHIP BETWEEN SEVERITY - INDEX AND PROBABILITY OF INJURY ACCIDENTS

encroachment angle distribution used was that reported by Hutchinson and Kennedy (14).

TABLE 8. MEAN SPEEDS AND STANDARD DEVIATIONS

Highway Type	Mean Speed (mph)	Standard Deviation (mph)		
Interstate-Rural	59.2	± 4.8		
Interstate-Urban	55.5	± 5.2		
Multilane-Divided and Undivided	53.8	± 4.8		
Two-Lane-Rural	55.4	± 4.6		

The vehicle speed distribution for each highway type was combined with the encroachment angle distribution, assuming that the speed and angle distribution were independent. The combined distributions were then used to compute the encroachment speed-angle probabilities that are shown in Table 9 for each highway type.

Using the point mass model presented by Ross(17), it was determined that some high-speed, high-angle impacts were not possible. However, because of the lack of encroachment data on speed-angle combinations to support this conclusion, it was decided that adjustment of the impact condition probabilities to account for the apparent impossibility of high-speed, high-angle impacts was not warranted.

Annualized Cost

The annualized cost of an improvement alternative, or existing condition, is computed as follows:

TABLE 9. ENCROACHMENT SPEED-ANGLE PROBABILITIES

Vehicle	IMPACT ANGLE (Degrees)							
Speed (MPH)	<7.5	7.5-12.5	12.5-17.5	17.5-22.5	22.5-27.5	>27.5		
INTERSTAT	E-URBAN							
<45	.010	.004	.003	.002	.001	.002		
45-55	.210	.088	.053	.035	.022	.031		
55-65	.243	.101	.061	.040	.025	.035		
65-75	.016	.007	.004	.003	.002	.002		
>75	.000	.000	.000	.000	.000	.000		
INTERSTAT	E-RURAL							
<45	.001	.001 .000 .000 .000		.000	.000			
45-55	.090	.038	.022	.015	.009	.013		
55-65	.335	.139	.084	.056	.035	.049		
65-75	.054	.023	.014	.009	.006	.008		
>75	.000	.000	.000	.000	.000	.000		
MULTILANE	-DIVIDED	AND UNDIVID	ED					
<45	.016	.007	.004	.003	.002	.002		
45-55	.271	.113	.068	.045	.028	.040		
55-65	.188	.078	.047	.031	.020	.027		
65-75	.005	.002	.001	.001	.000	.001		
>75	.000	.000	.000	.000	.000	.000		
2-LANE RU	RAL							
<45	.006	.002	.001	.001	.001	.001		
45-55	.217	.090	.054	.036	.023	.032		
55-65	.249	.104	.062	.041	.026	.036		
65-75	.009	.004	.002	.001	.001	.001		
>75	.000	.000	.000	.000	.000	.000		

$$C = CI + CCM + CNM$$

---Eq. 8

where:

C = annualized cost (dollars/year);

CI = annualized first cost of improvement alternative and zero
in the case of existing condition (dollars/year);

CCM = annual collision maintenance cost (dollars/year);

CNM = annual normal maintenance cost (dollars/year).

The first cost of an improvement alternative is input on the Roadside Hazard Improvement Form (Figure 2), and it is annualized by the computer program using a 20-year life, 9% interest rate, and zero salvage value. The annual normal maintenance in the above equation is input directly on this form.

The annual collision maintenance cost is computed as follows:

$$CCM = E \sum_{\Theta} P_{\Theta}(C/E) \sum_{V} P_{\Theta,V} \cdot CM_{\Theta,V} \qquad ---Eq. 9$$

where:

CCM = annual collision maintenance cost (dollars/year);

E = encroachment rate (number of roadside encroachments/mile/
year);

 $P_{\Theta}(\text{C/E})$ = probability that the improvement alternative, or existing condition, will be encountered given an encroachment at angle Θ ;

 $P_{\Theta,V}$ = probability of an encroachment at angle Θ and speed V given that an encroachment has occurred;

 $CM_{\Theta,V}$ = collision maintenance cost per encounter at angle Θ and speed V (dollars/encounter);

⊙ = encroachment angle (degrees);

v = encroachment speed (miles/hour).

In the case of slope improvements, or existing slope conditions, the collision maintenance cost per encounter is the same regardless of the angle and speed of encroachment. Therefore, the value input on the Roadside Hazard Improvement Form is used in the above equation for all encroachment speed-angle combinations.

However, in the case of guardrail, the relationship between guardrail collision maintenance cost and severity index, which was established in previous research conducted at the University of Nebraska-Lincoln (2) is used. In that study, the length of guardrail damaged and the number of posts that failed during an automobile collision were estimated from BARRIER VII computer simulations. The relationships between severity index and guardrail damage are shown in Figure 14 for installation lengths of 95 ft and 200 ft. Based on the cost values in AASHTO (18), the collision repair costs for the standard W-Beam guardrail was estimated as 9/10 of the current installation costs. Therefore, to calculate the collision maintenance cost per guardrail impact for a particular encroachment speed-angle combination, the computer program determines the length of damage from the relationship shown in Figure 14 using the severity index for the given speed-angle combination and multiples of the length of damage by \$7.60.

Probability of Zero Accident Reduction

At a given location, traffic accidents are random events, the occurrence of which can be described by a Poisson probability distribution. Therefore, even though an improvement alternative is expected to provide a reduction in injury accidents there is a certain probability that no reduction will result during the life of the improvement. The probability of zero injury accident reduction is:

COLLISION REPAIR COST W - BEAM (G4W) = \$7.60/ft.

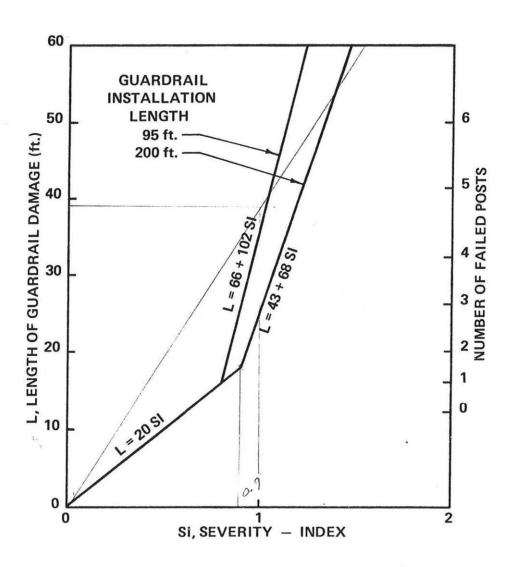


FIGURE 14. RELATIONSHIP BETWEEN SEVERITY — INDEX AND LENGTH OF GUARDRAIL DAMAGE

$$P(0) = e^{-m}$$
 --- Eq. 10

where:

P(0) = probability of zero injury accident reduction;

m = expected number of injury accidents reduced over the life of
 the improvement alternative (reduction in hazard index provided
 by alternative times its life in years). >

The computer program calculates and outputs this probability for each costeffective improvement alternative. Values for various expected injury accident reductions are shown in Table 10.

The probability of zero injury accident reduction provides a basis for eliminating those improvement alternatives with relatively high costeffectiveness values but with little chance of providing any reduction in injury accidents during their life times. For example, an improvement with a 20-year life and a 0.020 expected injury accident reduction per year would have a 0.67 probability of zero injury accident reduction, whereas a 40-year life improvement with the same expected reduction would have only a 0.45 probability. If both of these alternatives had the same annualized cost, they would then have the same cost-effectiveness value, but the 40-year life alternative would have a higher probability of actually providing a reduction.

TABLE 10. PROBABILITY OF ZERO INJURY ACCIDENT REDUCTION

Improvement Life (years)	Expected Reduction In Number Of Injury Accidents Per Year	Probability of Zer Injury Accident Reduction		
20	0.050	0.37		
	0.040	0.45		
	0.030	0.55		
	0.020	0.67		
	0.010	0.82		
40	0.050	0.14		
	0.040	0.20		
	0.030	0.30		
	0.020	0.45		
	0.010	0.67		

BENEFIT-COST METHODOLOGY

The primary difference between the benefit-cost method of improvement evaluation and the cost-effectiveness approach is that the measure of performance is accident cost savings instead of reduction in injury accidents. The benefit-cost ratio of an improvement alternative is computed as follows:

$$B/C = \frac{A_E - A_I}{C_I - C_F} \qquad ---Eq. 11$$

where:

B/C = benefit-cost ratio;

A_E = expected annual accident cost of existing condition (dollars/year);

A_I = expected annual accident cost of improvement alternative (dollars/year);

C_I = annualized cost of improvement alternative (dollars/year);

 C_E = annualized cost of existing condition (dollars/year).

The annualized costs of the improvement alternative and the existing condition in the above equation are the same as those used in the cost-effectiveness value equation (Equation 2).

The computer program does not calculate benefit-cost ratios for those improvement alternatives that are determined to be "not cost-effective." Thus, benefit-cost ratios are not computed for improvement alternatives that do not provide an accident cost savings (i.e., $A_I \geq A_E$). Therefore, a benefit-cost ratio less than one indicates that the alternative is not economically worthwhile. Whereas, a benefit-cost ratio greater than one or less than zero would indicate that the alternative is economical justifiable.

The expected annual accident cost of an improvement alternative, or existing condition, is computed as follows:

$$A = E \sum_{\Theta} P_{\Theta}(C/E) \sum_{V} P_{\Theta,V} AC_{\Theta,V} \qquad ---Eq. 12$$

where:

A = expected annual accident cost of improvement alternative, or existing condition (dollars/year);

E = encroachment rate (number of roadside encroachments/mile/
year);

 $P_{\Theta}(C/E)$ = probability that the improvement alternative, or existing condition, will be encountered given that an encroachment at angle Θ has occurred;

 $P_{\Theta,V}$ = probability of an encroachment at angle Θ and speed V given that an encroachment has occurred;

⊖ = encroachment angles (degrees);

v = encroachment speed (miles/hour).

The only difference between this equation and the hazard index equation (Equation 3) is that the average accident cost per encounter replaces the probability of an injury accident term.

As are the probability of injury and the guardrail collision maintenance cost variables, the average accident cost per encounter is computed as a function of severity index. An approach similar to that used by Weaver (18) was used to establish a relationship between severity index and accident costs. As shown in Table 10, the severity index and probability of injury accident were equated to a percentage distribution in terms of three accident severity classes: fatal, injury, and property damage only. The total accident costs shown in this table were determined by using the following accident cost

figure provided by the Nebraska Department of Roads:

Property Damage Only Accidents --- \$ 900

Injury Accident --- \$ 4,900

Fatal Accident --- \$336,000

A third-degree curve drawn to the histogram relationship in Table 11 is used by the computer program to determine the average accident cost per encounter used in Equation 12.

TABLE 11

RELATIONSHIP BETWEEN SEVERITY-INDEX AND INJURY ACCIDENT

PROBABILITIES, ACCIDENT CLASSIFICATIONS, AND TOTAL ACCIDENT COSTS

		Accident Classification C						
Severity-Index ^a	Probability of Injury Accident ^b	PDO Accidents (%)	Injury Accidents (%)	Fatal Accidents (%)	Accident Cost ^d (\$)			
SI <u><</u> 0.5	0.1	90	10	0	1,300			
0.5 < SI ≤ 1.0	0.3	60	40	0	2,500			
1.0 < SI ≤ 1.5	0.5	40	50	10	36,410			
1.5 < SI ≤ 2.0	0.7	10	60	30	103,830			
2.0 < SI < 2.5	0.8	0	50	50	170,450			
2.5 < SI	1.0	0	10	90	302,890			

- a. Computed by HVOSM and BARRIER VII Simulations
- b. Refer to Table 7
- c. Assumed in similar manner as done in TTI Report (18)
- d. Accident Costs: \$336,000 per fatal accident

\$4,900 per injury accident

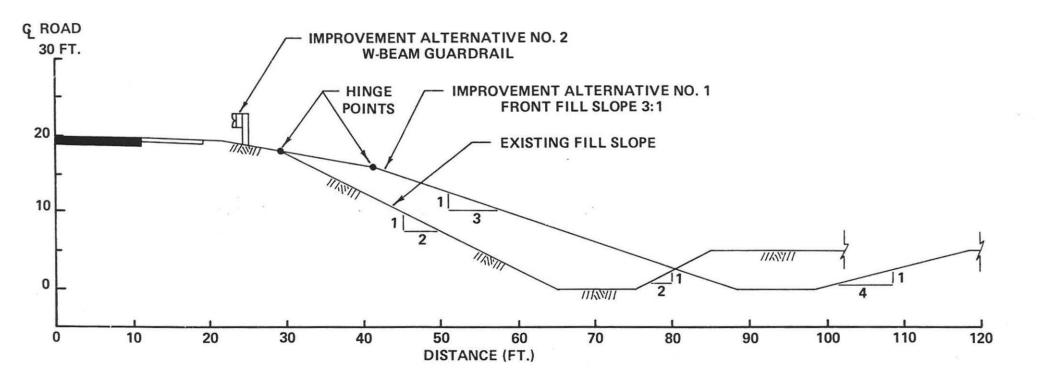
\$ 900 per property-damage-only accident

CASE STUDY NO. 3

This case study consisted of an actual field problem being considered by the Nebraska Department of Roads for a spot type improvement. A cross section of the 2-lane highway is shown in Figure 15. The roadway is classified as a DR-3 Major Arterial (3) with a design speed of 65 mph and an ADT of 3,650 vpd. The site is located on a tangent level section of US 15 between mile-posts 3.678 and 3.788. The shoulders are paved out 8 ft.

Existing Roadway

The existing roadway had a non-standard guardrail protecting the embankment, however, this guardrail will be completely removed and scrapped. The hinge point of the existing embankment is located 18 ft from the edge of the traveled lane. The embankment has a front slope of 2:1, a fill height of 20 ft., a ditch width of 10 ft., a back slope of 2:1, and a back slope height of 5 ft. The condition of the front slope is smooth and the ditch carries no water. Coding of the existing roadway is shown on the "Roadside Hazard Inventory Form" in Figure 16.


Improvement Alternative No.1

Improvement Alternative No. 1 consisted of modifying the existing roadside embankment. The roadside will be extended to provide a clear-recovery-area of 30 ft on a flat slope of 6:1. The embankment will have a front slope of 3:1, a fill height of 20 ft., a ditch width of 10 ft., a back slope of 4:1, and a back slope height of 5 ft.

Using the NDR earthwork program (RDS system), the following cost estimates in Table 12 were obtained:

STATE OF NEBRASKA BOARD OF PUBLIC ROADS CLASSIFICATIONS AND STANDARDS TYPICAL CROSS SECTIONS OF IMPROVEMENT FOR RURAL STATE HIGHWAYS

DR-3 MAJOR ARTERIAL 750 - 400 D.H.V.

60

CASE STUDY NO. 3

FIGURE 1.6

ROADSIDE HAZARD INVENTORY FORM

NEBRASKA DEPARTMENT OF ROADS LINCOLN, NEBRASKA

	Invento	ry Condu	cted by	Rich	ard	Rus	64	D	ate _	10 5	ept	1975	2
	HIGHW	AY		4									7
\otimes	Huphway Draugn Number 1 2 3 1 DR 2 DM 3 ROA 4 RC 6 RL			ADT 03650 10 11 12 13 14	Lane Width (ft)	Usable Shoulder Width (fr) 17 18	Width Shoulder Surfecing (II)	Median Width (ft)	Drg of Curre	Grade (K) UP DN 24 25	Shoulder Drop off (in)	Condition Non-Payer Shoulder 27 1. Smooth 2. Rough	BOX 1
l													J
	Description	Slop		1				MIL	E POII	NT AT H	AZAR	D	
\otimes	Huard Number 26 29 30 31	identification Code	Descriptor Code 2 34 35	Offset Code 36 1. Righ 2. Left or M		3		00	3678 11 42 43 4	_	Ending 378 47 48 49		BOX 2
	POINT H	IAZARDS]
0	51	Offset (fr)		Wedth (ft)			ength (ft)			Drop Inlet	Dep lin		BOX 3
L]
	LONGITU	JDINAL H	AZARD:	(Guard	rails, Br	idgerai	ls, Barr	ier Wa	lls, ar	nd Curb	s)		
0	2	Offset	L nd 54 55	Top Height (in)	Futt Specing (It) 58 59	Post Spacing of at Bridge End 60 1. Reduced 2. Not Redu	61 1. No.	Huh Heal	6. Not Ar	3 nchored (to groun	Ending 64 ad or Bridge)	-	BOX 4
L									4. Breeke	way Terminal De	sign .	,	
	SLOPE H	AZARDS	(Median	Ditches,	Roadsi	de Dita	hes, Fil	l Ditch	es, an	d Cut S	lopes)		
~		Hinge Point Offset (fs)	Slope (average)	Front Slope Height (ft)	D-tch W-dth (fr)	_	Sinne Sinne (ararage)	Back Stops Height (ft)	C	ondition Slope:	Depth of Water		2
∞	51	18 52 53	2 :1	55 56	57 51	_	2 :1	60 61		62	1		BOX
										1. Smooth 2. Rough	1. None 2. Less 3 Green	then 2 ft. fer than 2 ft.	
Γ	DATE Mu Day	·.											
\otimes	70 71 72 73	74 75	Recommendation	15				(44) 4(4) N			M Cant Type		BOX 6

Ite	em ·	Quantity Unit Costs			
1.	ROW	1.269 ac.	\$1500/ac.	1,904	
2.	Culvert Excavation	96 cyd	\$6/cyd	576	
3.	Roadway Excavation	1504 cyd	\$0.66/cyd	993	
4.	30 in. Culvert Pipe	40 lf	\$17.96/1f	718	
		**)	Total =	= \$4,191	

TABLE 12. IMPROVEMENT ALTERNATIVE NO. 1 COST ESTIMATES

Coding of Improvement Alternative No. 1 is shown on the "Roadside Hazard Improvement Form" in Figure 17.

Improvement Alternative No. 2

Improvement Alternative No. 2 will consist of installing a standard W-beam guardrail at a lateral offset distance of 10 ft. from edge of traveled lane. No changes will be made to the existing embankment. The guardrail will be 300 ft. long and both ends will have breakaway terminal designs. A rub rail will be used to prevent vehicle snagging because the height of guardrail is 1-in. higher than a standard design of 27 in. Cost estimates for the guardrail are shown in Table 13.

 Item
 Quantity
 Unit Costs
 Cost (\$)

 1. W-Beam Guardrail
 300 lf
 \$8.0914/lf
 2,427

 2. Breakaway Terminals
 2
 \$464.1778 ea.
 928

 Total
 = \$3,355

TABLE 13. IMPROVEMENT ALTERNATIVE NO. 2 COST ESTIMATES

FIGURE 17

ROADSIDE HAZARD IMPROVEMENT FORM

NEBRASKA DEPARTMENT OF ROADS LINCOLN, NEBRASKA

	Improvement Recommended by Bichard Ruby Date 10 Sept 1979	
\otimes	HIGHWAY Hughway Hughway Design Speed French Hazard Number L	
\otimes	COSTS Central Central (Settle 181,000) Collinson Meintenance (\$100/secid.) Normal Meintenance (\$100/secid.) Normal Meintenance (\$100/secid.) O J O J 20 21 22 23 24 25 26 27 28 29 Hazerd Improvement Hazerd Improvement	
	POINT HAZARD IMPROVEMENTS 1 1 Alleviate Hazard 32 2. Make Breekaway and/or Relocate 3. Reconstruct links to Safe Design 4. Reconstruct Cross Drainage System	
	1 2 install Traffic Barrier	
	1 3 Instell Energy Attenuator 32 33 Descriptor Code	
	LONGITUDINAL HAZARD IMPROVEMENTS 2 1 Curb 1. Remove and Regrade 2. Initial Wedge Modification	
	2 Traffic Barrier 1. Remove Descriptor Code (New Design Complete Boxes A, B & C) 33 34 (New Design Only) 3. Replace with New Design (complete Boxes A, B & C)	1
	2 3 Bridgerail 1. Modify 32 2. Replace with New Design 33 34 Descriptor Code	
	SLOPE IMPROVEMENTS 3 1 Install Traffic Barrier	
\boxtimes	Hinge Point Offset Front Stope Height (ft) Stope Height (ft) High Height (ft) Hight Height (ft) Hight Height Height (ft) Height	
C	NO IMPROVEMENT	
C	BOX A (TRAFFIC BARRIER MODIFICATIONS) Top Top Height Specing IfII Begin End Socion IniI Top Specing IfII Fort Specing IfIII Fort Specing IfII Fort Specing IfII	
X	BOX B (CHANGES TO EXISTING GUARDRAIL) Beginning Ending Change in Length (ft) 1. Lengthen 61 2. Shorten BOX C (MILE POINT OF CHANGE) Beginning Ending Ending D 3 6 7 8 69 70 71 72 73 74 75 76	2000
8	1. End of Group 79 2. End of Group and Program 80 IBM Cerd Type	1 %

Coding of Improvement Alternative No. 2 is shown on the "Roadside Hazard Improvement Form" in Figure 18.

Computer Output Listing

The listing of the computer output is shown in Figure 19. As evident, the slope improvement (Alternative No. 1) is more attractive than the guardrail improvement (Alternative No. 2) because of a lower cost-effectiveness value and a higher benefit-cost ratio. However, both improvement alternatives have a high probability of a zero hazard reduction over the same project life of 20 years. It is interesting to note that even though the guardrail improvement has a lower first cost, its hazard-index (injuries/yr) is higher.

It is important to re-emphasize that the computer program as it now stands was not programmed to handle (1) the effect of the rub rail in preventing wheel snagging, and (2) the effect of breakaway terminals in reducing the severity of end impacts.

FIGURE 18

ROADSIDE HAZARD IMPROVEMENT FORM

NEBRASKA DEPARTMENT OF ROADS LINCOLN, NEBRASKA

Improvement Recommended by $oldsymbol{\mathcal{Z}}$	Richard Kuby	Date 10 Sept 1975	7
HIGHWAY Highway Highway Sevel Sevel	ADT 10 11 12 13 14	Hazard Number Hazard Oroup Number Improvement Atternative Number 2	ROX 1
66634	Collision Maintenance (\$100/socid.) O J 20 21 22 23 24 25 Hazard Improvement	Normal Maintenance (\$100/yr, 1) A 26 27 28 29 Hazard Improvement	BOX 2
POINT HAZARD IMPROVEMENTS 1 Alleviate Hazard .	1. Remove 32 2. Make Breaksavey and/or Relocate 3. Reconstruct inlet to Safe Design 4. Reconstruct Cross Drainage System	¥	3
1 2 Install Traffic Barrier 30 31 (complete Box A) 1 3 Install Energy Attenuator	Descriptor Code	34 36 36 37 Length (ft)	BOX
LONGITUDINAL HAZARD IMPROV 2 1 Curb 2 31 Traffic Barrier 2 3 3 Bridger all SLOPE IMPROVEMENTS	JEMENTS 1. Remove and Regrade 32 2. Install Wedge Modification 1. Remove 32 2. Modify (complete Boxes A, B & C) 3. Replace with New Design (complete B	Oxes A, B & C) Descriptor Code (New Design Only) Oxes A, B & C) Oxes A, B & C)	BOX 4
3 Install Traffic Barrier 30 Install Traffic Barrier (complete Baxes A and C) Honge Point Slope (tr) (average) 3 2 Modify :1 :1	2 1. At Bridge 32 2. Not at Bridge Front Slope Height Width Stope (In) Ith Started 1 23 36 37 38 39 11	Back Stope And	BOX 5
NO IMPROVEMENT			BOX 6
BOX A (TRAFFIC BARRIER MODIFICATION Top 10 11 12 12 12 12 12 12 12 12 12 12 12 12	CATIONS	Beginning Ending 59 60 1 Not Anchored (to ground or bridge) 2. Anchored (to ground or bridge) 3. Anchored (to ground or bridge) 4. Breakeway Ferminal Design	BOX A
BOX B (CHANGES TO EXISTING C	Charge in Langth (ft)	C (MILE POINT OF CHANGE) proling Friding Friding 7 88 65 70 71 72 73 74 75 76	BOX C
79 2. End of Group and Program	[2] IBA	A Card Type	0X 7

COST EFFECTIVENESS PROGRAM

UNIVERSITY OF NEBRASKA AND NEBRASKA DEPARTMENT OF ROADS

HIGHWAY DESIGN NUMBER = DR- 3
TYPE HIGHWAY = US- 15
DESIGN SPEED = 65 MPH
ADT = 3650
PROJECT LIFE = 20.0 YRS
INTEREST RATE = 9.000 %
DATE = 9-10-79

			Н	A Z	A R	D				I	M P	R O	V E	M E i	Y T	
HAZARI) NO	GROUP NO	IDENT CODE			OF ROAD	MILEP BEG	OST END	IMPR ALT	IMPR CODE	HAZARD INDEX (INJ/YR)	CLEAR RECOVERY ZONE (FT)	FIRST COST (\$1000)	TOTAL ANNUAL COST (\$/YR)	COST EFFECTIVE VALUE	ZERO ACCIDENT REDUCTION (%)	BENEFIT COST RATIO
1	3	7	2	0.02421	1	3.678	3.788	1	3-2-0	0.00824	30	4.2	0	28	72	1542.5
1	3	7	2	0.02421	1	3.678	3.789	2	3-1-2	0.01256	10	3.4	1	156	79	337.5

SUMMARY AND CONCLUSIONS

The computer program in this study was developed to expedite the lengthy and tedious cost-effectiveness and benefit-cost calculations for making W-beam guardrail improvements on roadside fill slopes. For example, analyzing a single group consisting of 2 hazards and 4 improvement alternatives requires less than 2 minutes of computer execution time in comparision to three or four man-days of effort.

The work accomplished in this study has demonstrated that the costeffectiveness computer program shows great potential in providing highway engineers and administrators in Nebraska with a managerial tool for evaluating spot safety improvement projects and design projects in order to realize the greatest return on the investment made to reduce injury accidents.

Future Work

The hazard inventory and improvement coding forms developed in this study for computer usage are general in scope and include most roadside hazards that are likely to be encountered by an errant vehicle. A tentative list of subroutines that could be added to the existing computer program are briefly described in Table 14.

All of the computer simulations in this study were run using a standard size automobile. Additional work should be done to include smaller size automobiles. Also, on low volume roads and in urban areas, additional work should be done on establishing (1) frequency encroachment rates, and (2) lateral offset impact distribution probabilities.

TABLE 14
TENTATIVE LIST OF ADDITIONAL COMPUTER SUBROUTINES

Subroutine Name	Subroutine Description								
ENDGR	Compute severity-indicies of different guardrail end-treatments								
VAULT	Compute severity-indicies of vehicle vaulting of guardrail (1) located on slopes, (2) located in depressed medians, and (3) with heights lower than standard								
SNAG	Compute severity-indicies of vehicle snagging on guardrail posts								
CABLE*	Compute severity-indicies of different cable guard- rail designs								
BRIDGE	Compute severity-indicies of different bridgerail designs								
PTHAZ	Compute severity-indicies of different types of point hazards								
RUT	Compute severity-indicies of rutting or drop-offs between travelled lanes and shoulders								
SOFT	Compute severity-indicies of different Fitch Module designs								
CURB	Compute severity-indicies of different curb designs								
UNIT	Store unit costs by district								
MAIN 2	Subroutine to expand capability of computer program to handle groups containing as many as 15 hazards, i.e., Guardrail-bridgerail sites at over-passes								
ORDER	Subroutine to re-arrange hazards by lateral and longitudinal distances (x-y coordinates) in order to determine exact location of hazards in relation to each other								

^{*} Current HP&R Project

Computer coding forms similar to the forms developed in this study, but of lesser detail, were subjected to extensive field testing by Weaver $(\underline{1})$ in Texas. It is recommended that a similar field procedure be implemented in Nebraska in order to correct any unforeseen problems.

Ultimately, the computer program should be utilized to (1) develop design nomographs for the installation of guardrail similar to the nomograph presented in HRR SR 81 (19) as shown in Figure 20, and (2) to assist in establishing guardrail design policies and standards in Nebraska.

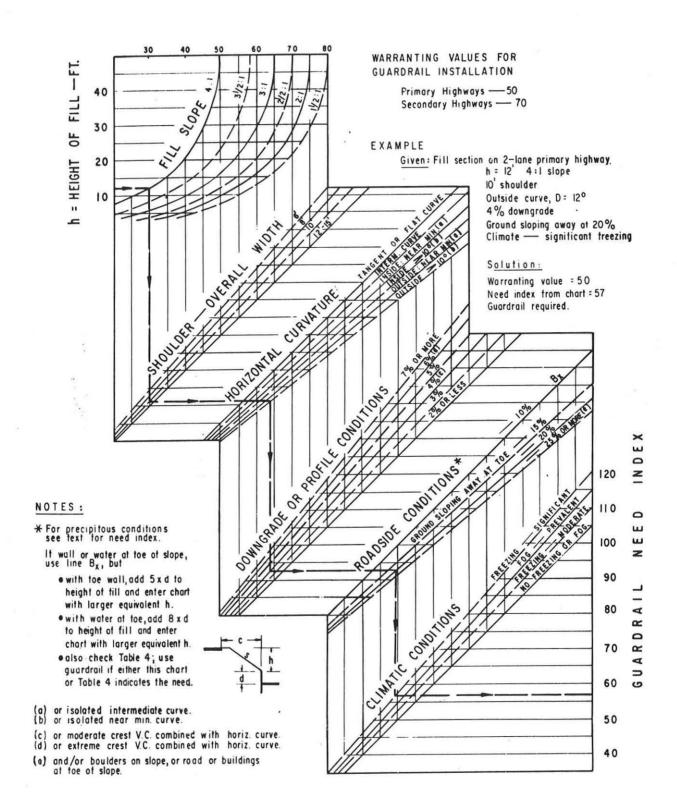
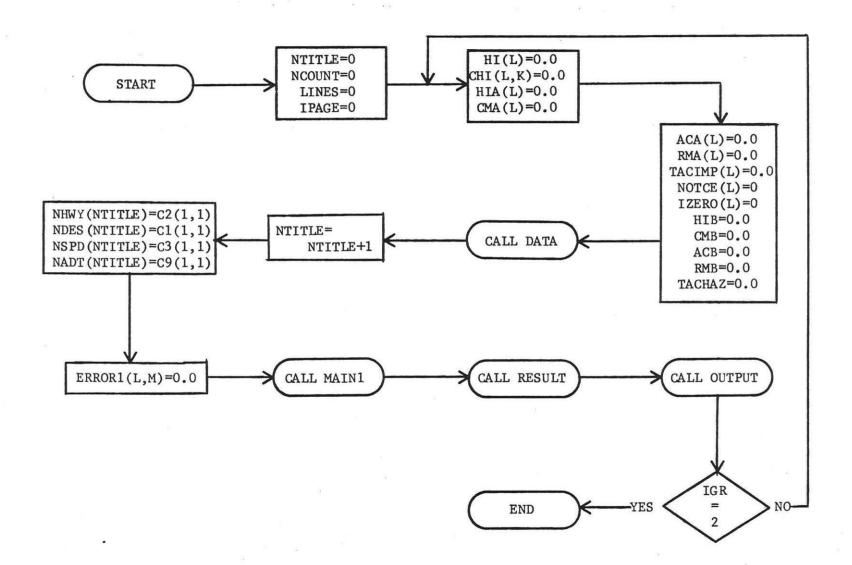
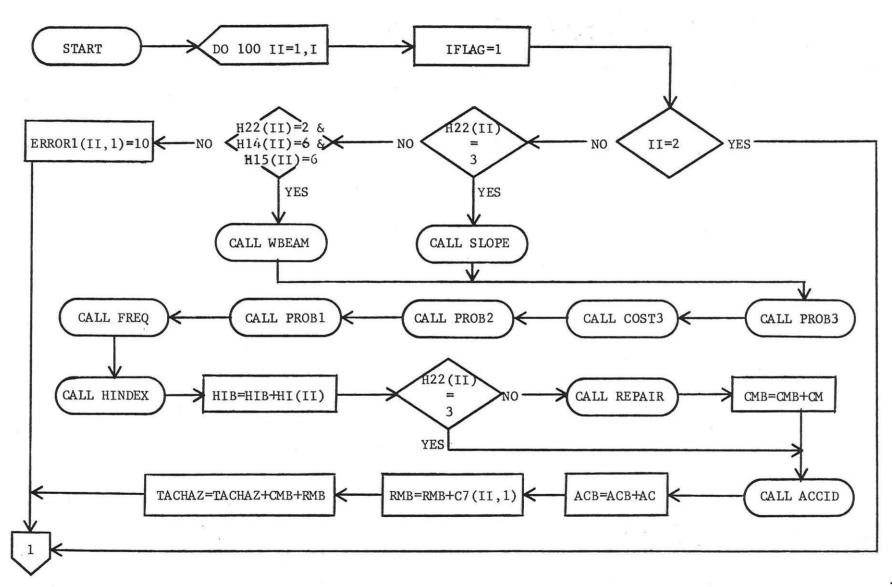


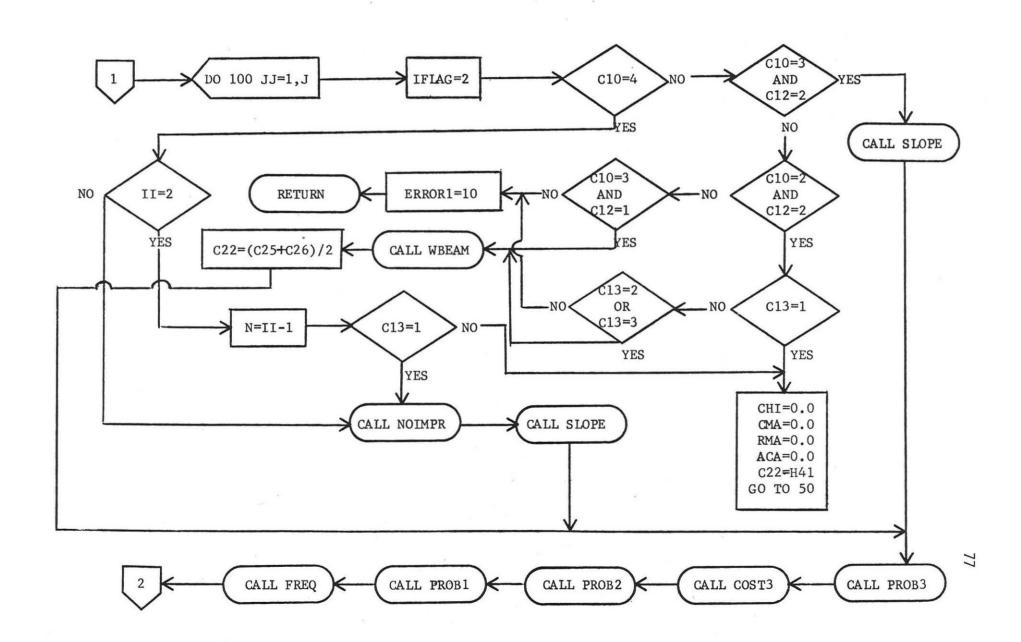
FIGURE 20. NOMOGRAPH TO COMPUTE GUARDRAIL NEED INDEX (HRR SR 81)

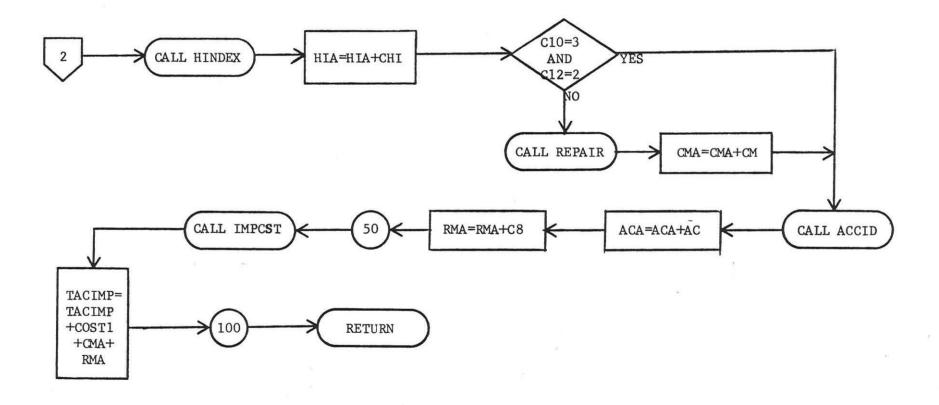
REFERENCES

- Weaver, G. D., Woods, D. L., and Post, E. R., "Cost-Effectiveness Analysis of Roadside Safety Improvements", TRB 543, pp 1-15, 1975.
- Post, E. R., McCoy, P. T., Witt, W. E., Wipf, T. J., and Chastain, P.A., "Cost-Effectiveness of Guardrail Improvements for Protecting Bridge Piers in Depressed Medians on Horizontal Curves", <u>Presented to TRB</u> <u>Annual Meeting in January 1979</u>, Civil Engineering Department, Research Report No. TRD-03-002-78, University of Nebraska-Lincoln, 77 pp, Aug 1978.
- 3. "Minimum Design Standards", Board of Public Roads Classifications and Standards, State of Nebraska, 1976.
- 4. McHenry, R. R., and Segal, D. J., "Determination of Physical Criteria for Roadside Energy Conversion Systems", Cornell Aeronautical Laboratory Report VJ-2251-V-1, July 1976.
- 5. McHenry, R. R., and DeLeys, N. J., "Vehicle Dynamics in Single Vehicle Accidents: Validation and Extension of a Computer Simulation", Cornell Aeronautical Laboratory Report VJ-2251-V-3, Dec. 1968.
- 6. Ross, H. E., and James, J. E., "HVOSM User's Manual", <u>Texas Transportation</u> <u>Institute</u>, Research Report 140-9, Aug. 1974.
- 7. Ross, H. E., and Post, E. R., "Full-Scale Embankment Tests and Comparisons with a Computer Simulation", TRB 488, pp. 53-63, 1974.
- 8. Ross, H. E., and Post, E. R., "Tentative Criteria for the Design of Safe Sloping Culvert Slopes", <u>HRR 386</u>, pp. 101-10, 1972.
- Weaver, G. D., Marquis, E. L., and Olson, R. M., "Selection of Safe Roadside Cross Sections", NCHRP 158, 1975.
- 10. Powell, G. H., "BARRIER VII: A Computer Program for Evaluation of Automobile Barrier Systems", Report No. FHWA-RD-73-51, April 1973.
- 11. Powell, G. H., "Computer Evaluation of Automobile Barrier Systems", Report No. FHWA-RD-73-73, August 1970.
- 12. Ross, H. E., and Post, E. R., "Criteria for Guardrail Need and Location on Embankments--Volume One, Development of Criteria", <u>Texas Transportation Institute</u>, Research Report 140-4, April 1972.
- Glennon, J. C., "Roadside Safety Improvement Programs on Freeways: A Cost-Effectiveness Priority Approach", NCHRP 148, 1974.
- 14. Hutchinson, J. W. and T. W. Kennedy, "Medians of Divided Highways--Frequency and Nature of Vehicle Encroachments", University of Illinois Engineering Experiment Station Bulletin 487, 1966.

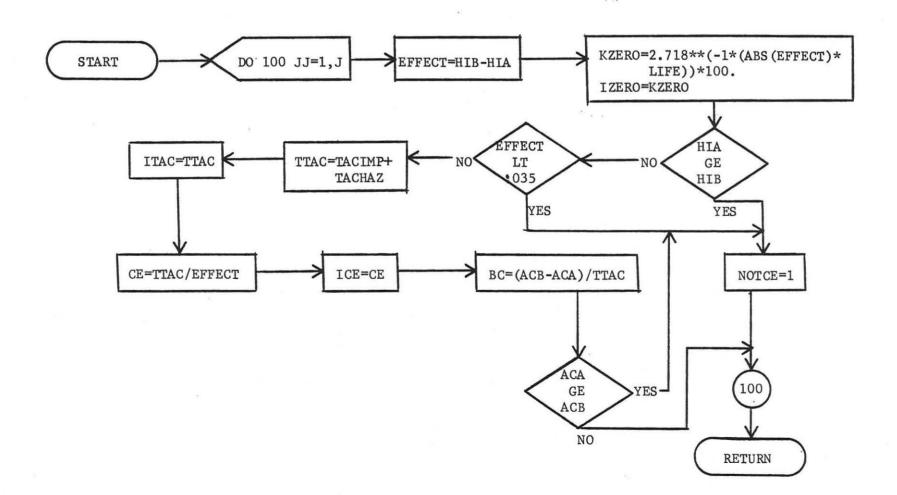

- 15. Glennon, J. C. and Wilton, C. J., "Effectiveness of Roadside Safety Improvements: Vol. I A Methodology for Determining the Safety Effectiveness of Improvements on All Classes of Highways", Federal Highway Administration, Report No. FHWA-RD-75-23, November, 1974.
- Post, E. R., Ruby, R. J., McCoy, P. T., and Coolidge, D. O., "Cost-Effectiveness of Driveway Slope Improvements", TRB 685, pp. 14-19, 1978.
- 17. Ross, H. E., Jr., "Inpact Performance and a Selection Criterion for Texas Median Barriers," Texas Transportation Institute Research Report 140-8, April, 1974.
- 18. Weaver, G. D., Post, E. R., and French, D. D., "Cost-Effectiveness Program for Roadside Safety Improvements on Texas Highways," Volume 2: Computer Locume..talion Manual, Texas Transportation Institute Research Report 15, August, 1974.
- 19. "Highway Guardrail: Determiniation of Need and Geometric Requirements", HRR SR 81, 1964.
- Calcote, L. R., "Development of Cost-Effectiveness Model for Guardrail Selection", Volume 1. Technical Documentation, Final Report submitted to FHWA, Southwest Research Institute, November 1977.

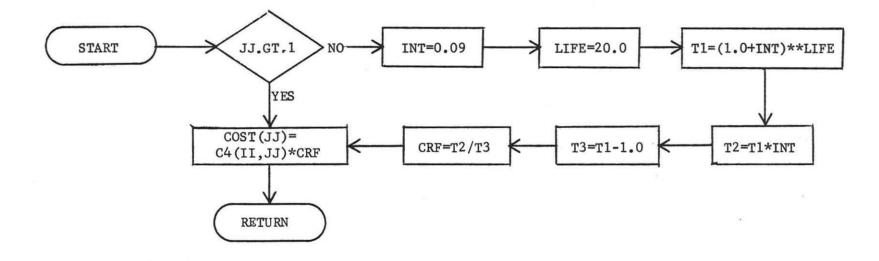

APPENDICES


APPENDIX

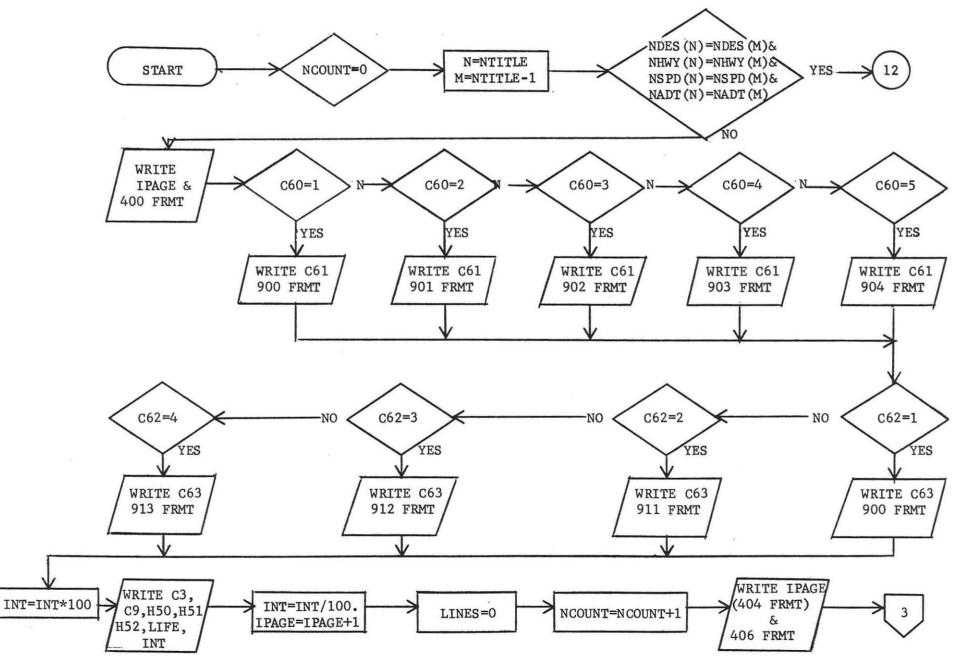

A. COMPUTER PROGRAM FLOW CHARTS

MAIN PROGRAM

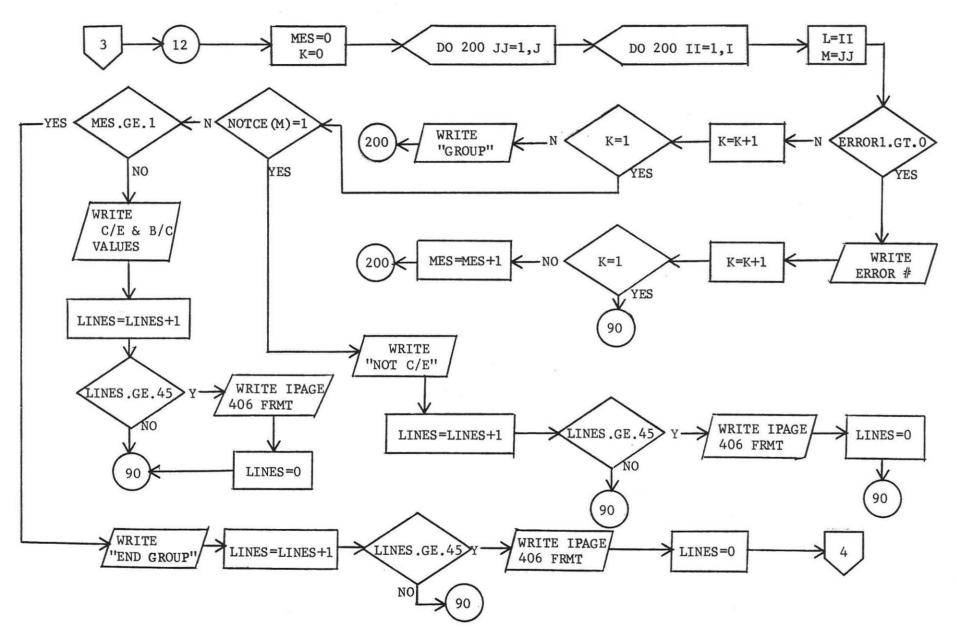


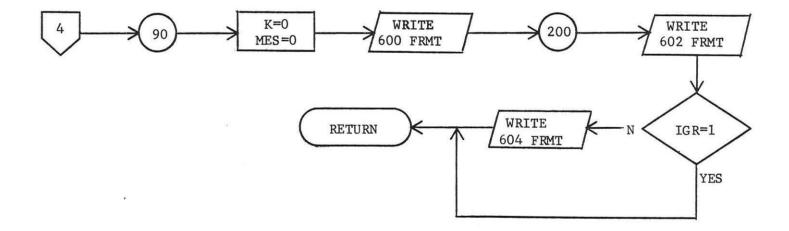


SUBROUTINE RESULT

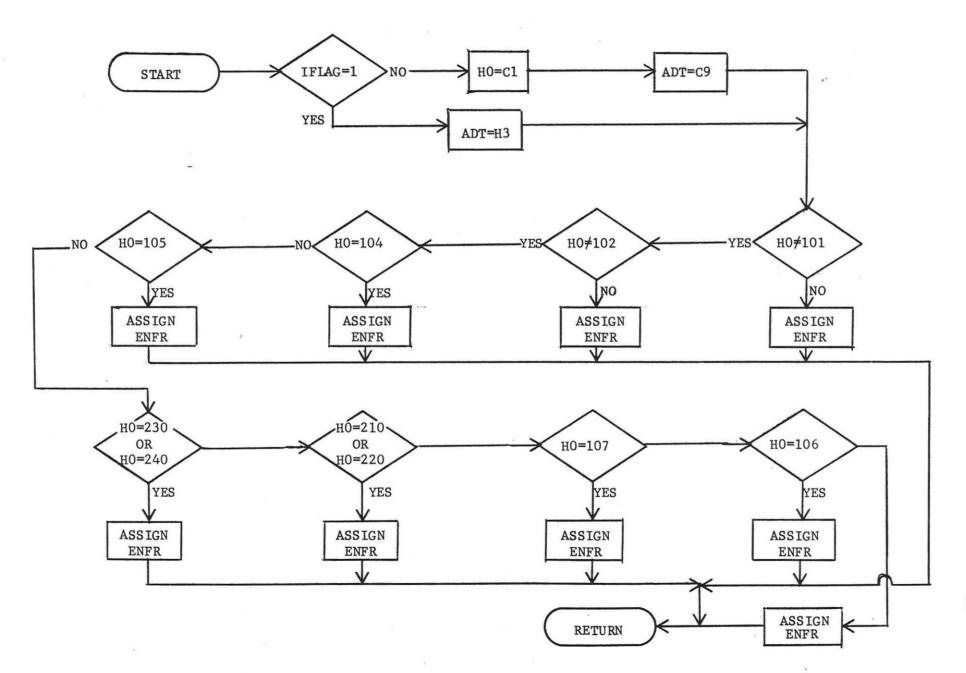


SUBROUTINE IMPCST

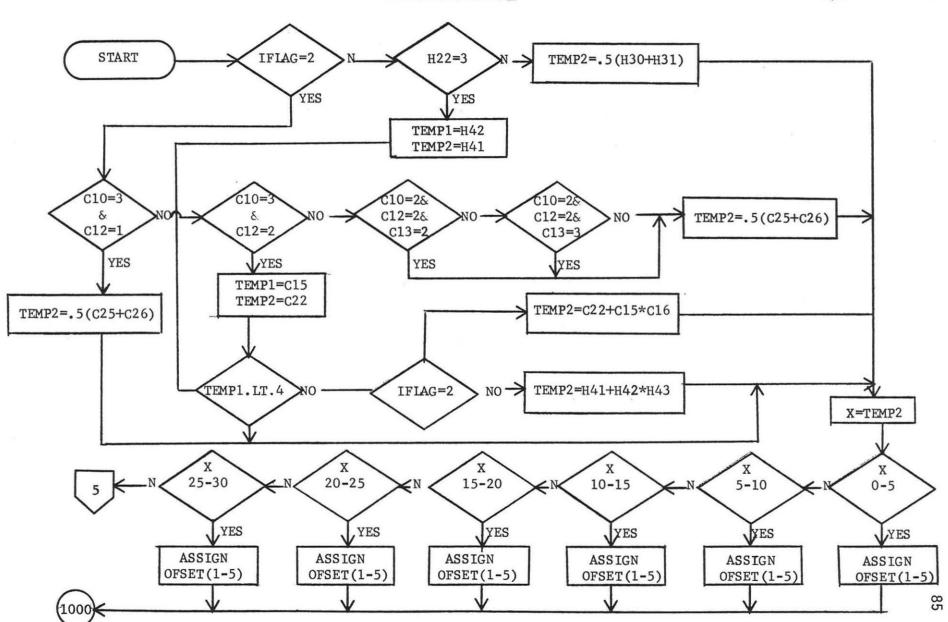


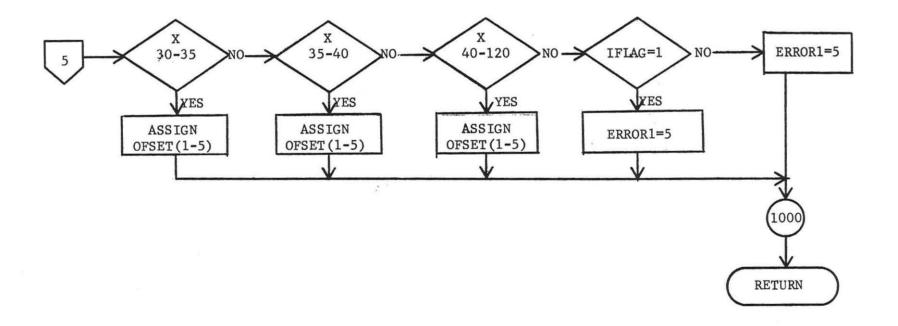


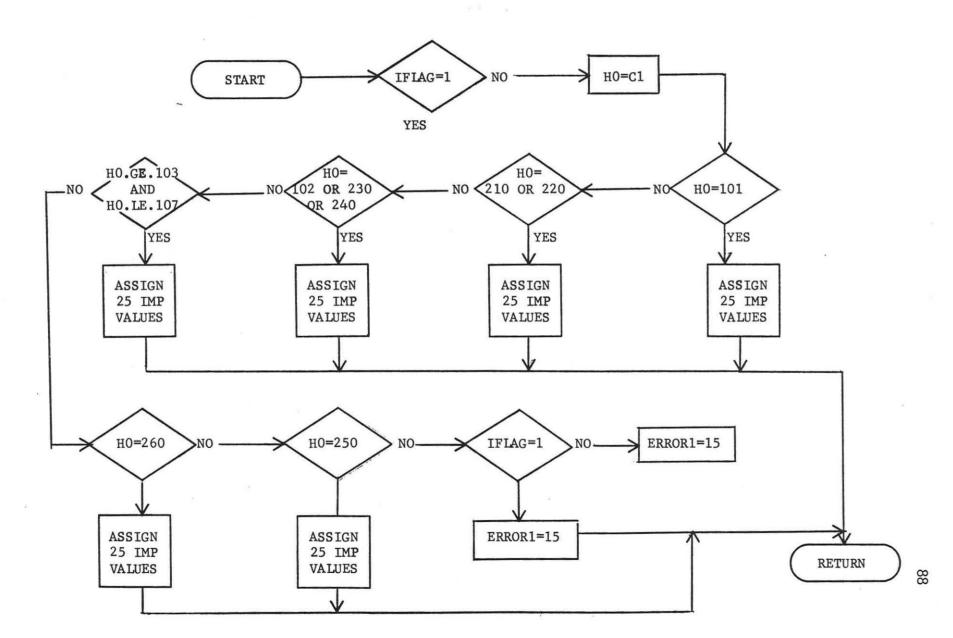
SUBROUTINE OUTPUT

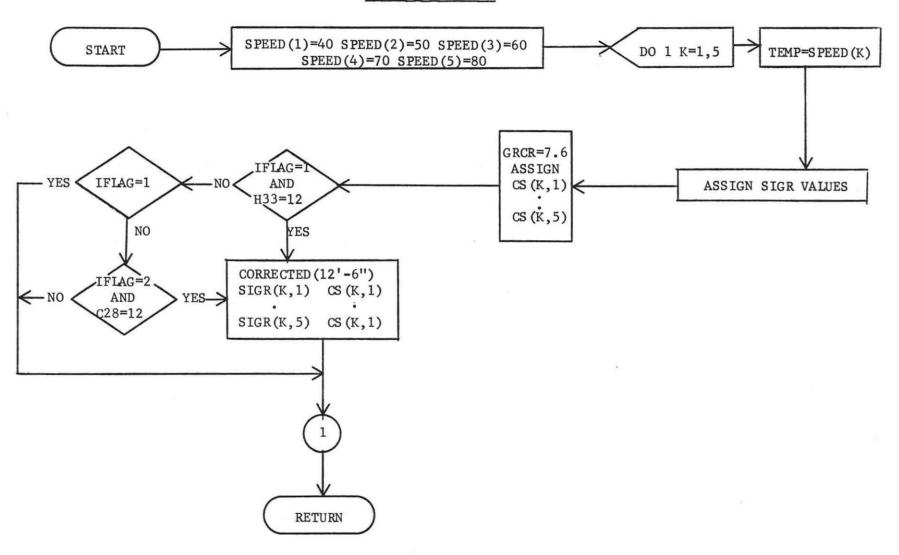


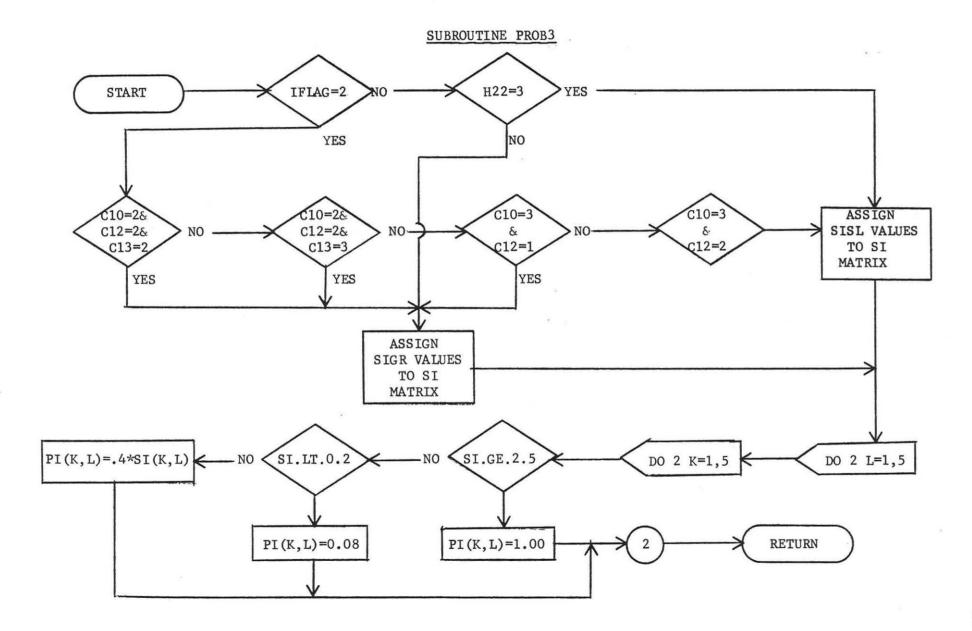
81



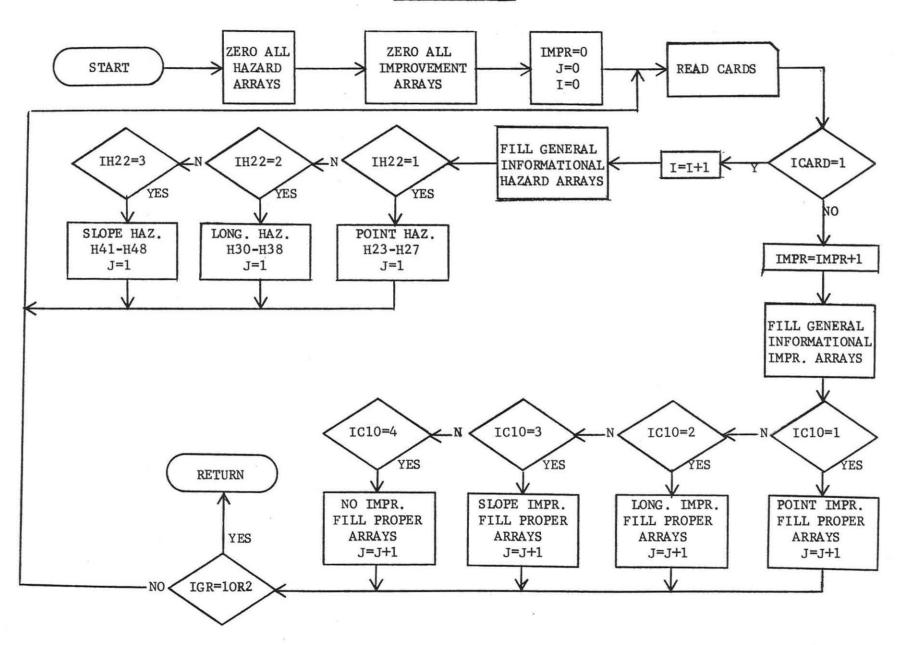

SUBROUTINE FREQ


1/2

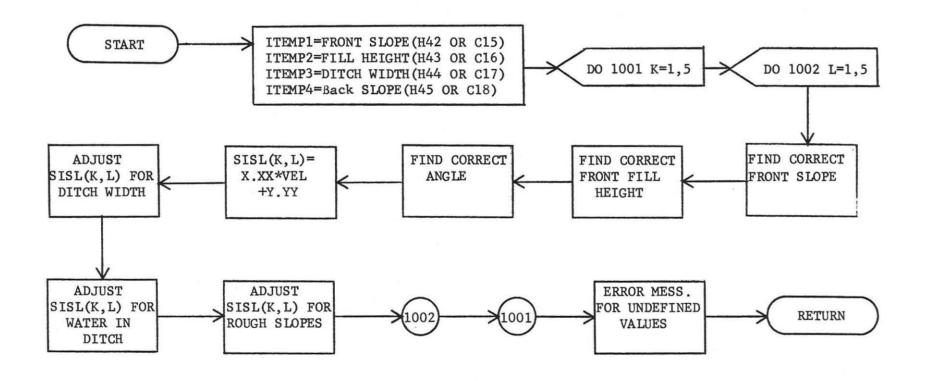


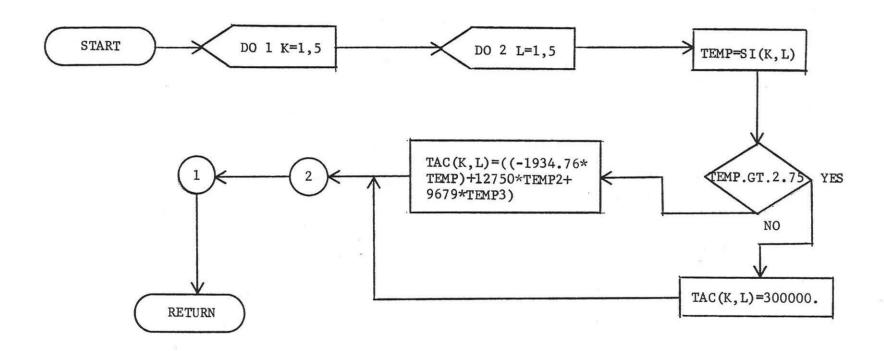

SUBROUTINE HINDEX SUM=0.0 ALONG1= IFLAG=1 START ASUM=0.0 0.5*(ABS (C46-C45))*5280 YES ALONG1= 0.5(ABS(H19-H18))*5280 SUM=SUM+PI*IMP*ALONG1 DO 6 K=1,5 TEMP=X.X (OFSET) ASUM=ASUM+TEMP*SUM IFLAG=2 HI=(ASUM*ENFR*.5)/5280 YES CHI=(ASUM*ENFR*.5)/5280 RETURN

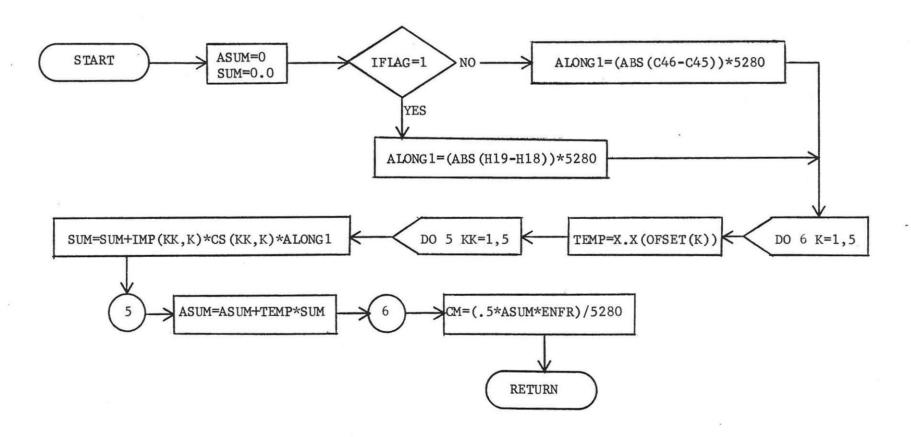
SUBROUTINE PROB2

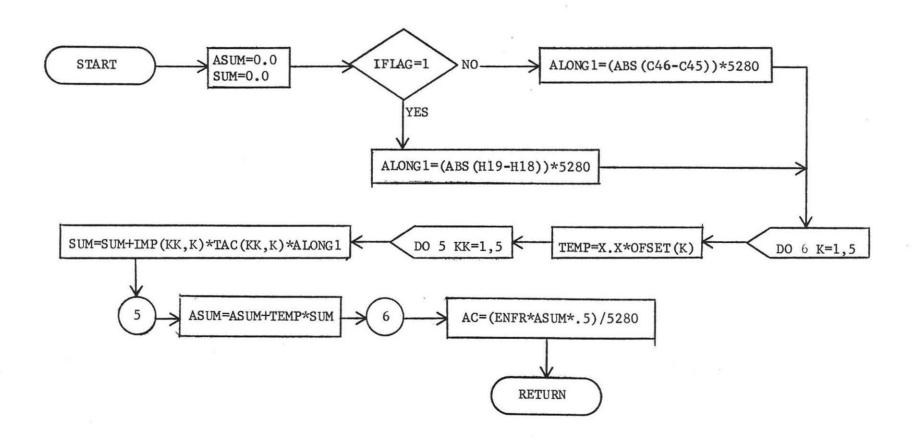


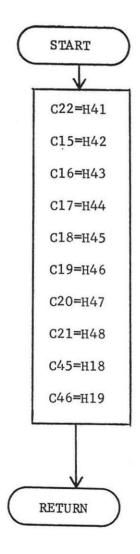
SUBROUTINE WBEAM




SUBROUTINE DATA


SUBROUTINE SLOPE


SUBROUTINE COST3


SUBROUTINE REPAIR

SUBROUTINE ACCID

SUBROUTINE NOIMPR

APPENDIX

B. COMPUTER PROGRAM SOURCE LISTING

```
$JOB
                   TIME=300
           ************
     C*
                      GUARDRAIL UTILIZATION: A COST-EFFECTIVENESS
     C*
     C*
                              COMPUTER PROGRAM TO ANALYZE
     C*
     C*
                        W-BEAM GUARDRAIL FOR USE ON FILL SLOPES
     C*
     C*
                      A COOPERATIVE RESEARCH PROJECT BY THE NEBRASKA
     C*
                        DEPARTMENT OF ROADS AND THE UNIVERSITY OF
                         NEBRASKA, CIVIL ENGINEERING DEPARTMENT
     C
     C
     C
      MAIN PROGRAM
     C
     C
       *****************
     C
 1
          DIMENSION HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
                    ERROR1(3,4), CS(5,5), IZERC(4)
 2
          DIMENSION TTAC(4), CE(4), BC(4), ICE(4), ITAC(4), NOTCE(4)
 3
          DIMENSICN COST1(4), NDES(100), NHWY(100), NSPD(100), NADT(100)
 4
          DIMENSION OFSET (5)
 5
          DIMENSION SIGR (5.5)
          DIMENSION PI(5,5)
 7
          DIMENSICN
                      HO(3), H1(3), H2(3), H3(3), H4(3), H5(3), H6(3),
                      H7(3), H8(3), H9(3), H10(3), H11(3), H12(3),
                     H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                     H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                     H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                     H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                     H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                     H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                     H63 (3)
 8
          DIMENSION
                      C1(3,4),
                               C2(3,4),
                                         C3(3,4),
                                                  C4(3,4), C5(3,4),
                      C6 (3,4),
                               c7(3,4),
                                         C8(3,4),
                                                  C9 (3,4), C10 (3,4),
                     C12(3,4), C13(3,4), C14(3,4), C15(3,4), C16(3,4),
                     C17 (3,4), C18 (3,4), C19 (3,4), C20 (3,4), C21 (3,4),
                     C25 (3,4), C26 (3,4), C27 (3,4), C28 (3,4), C29 (3,4),
                     C30(3,4), C31(3,4), C32(3,4), C33(3,4), C40(3,4),
                     C41(3,4), C42(3,4), C45(3,4), C46(3,4), C22(3,4),
                     C60(3,4), C61(3,4), C62(3,4), C63(3,4)
    C
9
          DIMENSION IMP (5,5)
10
          DIMENSION SPEED (5), ANGLE (5), SISL (5,5)
11
          DIMENSION
                     TAC(5,5), SI(5,5)
12
          INTEGER ERROR1
13
          INTEGER TEMP1. TEMP2. X
14
                  HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
          INTEGER
                  H16, H17, H22, H23, H24, H25, H26, H27, H30, H31, H32, H33, H34,
                   H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                  H51, H52, H60, H61, H62, H63
    C
15
                  C1,C2,C3,C5,C6,C7,C8,C10,C12,C13,C14,C15,C16,C17,C18,
          INTEGER
                  C19,C20,C21,C22,C25,C26,C27,C28,C29,C30,C31,C32,C33,
                  C40,C41,C42,C60,C61,C62,C63,C9
```

C

```
16
              INTEGER SPEED, VEL
 17
             CCMMON / MAIN5 / HIB, HI, CMB, CM, ACE, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
                                 ACA, RMA, TACIMP, IZERO, LIFE, INT
 18
             COMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
 19
             COMMON/ CST1/COST1
 20
             COMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
      C
      C
 21
             COMMON/ ENFRE /ENFR
      C
 22
             COMMON/ IDENT /I, J, II, JJ, ICARD, IFLAG, IMPR, NTITLE
      C
 23
             CCMMON/ LATOF /OFSET
      C
      C
      C
 24
             CCMMON/ IMPROB /IMP
      C
25
             COMMON/ GRSI /SIGR
      C
26
             CCMMON/ HURT /PI,SI
      C
27
             COMMON/ SLOPE1 /SISL
28
             COMMON/ DATA1 /HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13,
                              H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                          H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                              H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
      C
      C
      C
29
             CCMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
                        C22, C16, C17, C18, C19, C20, C21, C25, C26, C27, C28, C29, C30,
                              C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
      C
30
             CGMMON/ GRCRC / CS
31
             CCMMON/ ERROR /ERBOR1
32
             REAL IMP
33
             REAL INT, LIFE
34
      9999
            CONTINUE
      C
      C
            SET PECGRAM COUNTERS
     C
35
            NTITLE = 0
36
             NCCUNT = 0
37
            LINES = 0
38
            IPAGE = 1
     C
     C
            INITIALIZE VARIABLES
     C
39
        105 CONTINUE
40
            DO 55 L = 1.3
41
            HI(L) = 0.0
42
            DO 55 K = 1.4
43
            CHI(L,K) = 0.0
      55
44
            CONTINUE
45
            DO 50 L=1,4
46
            HIA(L) = 0.0
47
            CMA(L) = 0.0
48
            ACA(L) = 0.0
49
            RMA (L) = 0.0
```

TACIMP(I) = 0.0

```
51
           NOTCE (I) = 0
 52
           IZERO(L)=0
53
     50
           CONTINUE
54
           HIB=0.0
55
           CMB=0.0
56
           ACB=0.0
57
           RMB=0.0
58
           TACHAZ = 0.0
     C
59
           CALL DATA
     C
           NTITLE = NTITLE +1
60
61
           NDES(NTITLE) = C1(1,1)
62
           NHWY(NTITLE) = C2(1,1)
63
           NSPD(NTITLE) = C3(1,1)
64
           NADT(NTITLE) = C9(1,1)
     C
     C
     C
     C
           INITIAL GROUP ERROR MESSAGES
     C
     C
     C
           I = NUMBER OF HAZARDS IN GROUP
     C
           J = NUMBER OF IMPROVEMENT ALTERNATIVES FOR GROUP
65
           DO 60 L = 1.1
           DO 60 M = 1,J
66
67
           ERROR1(I,M) = 0.0
68
      60
           CONTINUE
          CALL MAIN1
69
70
          CALL RESULT
71
          CALL OUTPUT
72
          IF (IGR .EQ. 2) GO TO 100
          GO TO 105
73
74
       100 CONTINUE
     C
75
          STOP
76
          END
    C
    C
    C
77
          SUEROUTINE MAIN 1
    C
    CH
    C
    C
          THIS IS THE MAIN SUBROUTINE THAT LINKS ALL SUBROUTINES
78
          DIMENSION HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
                    ERROR 1 (3,4), CS (5,5), IZERO (4)
79
          DIMENSICN TTAC(4), CE(4), BC(4), ICE(4), ITAC(4), NOTCE(4)
80
          DIMENSICN COST1 (4), NDES (100), NHWY (100), NSPD (100), NADT (100)
81
          DIMENSION OFSET (5)
82
          DIMENSICN SIGR (5,5)
83
          DIMENSION FI(5,5)
84
          DIMENSION
                     HO(3), H1(3), H2(3), H3(3), H4(3), H5(3),
                      H7(3), H8(3), H9(3), H10(3), H11(3), H12(3),
```

```
101
                          H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                          H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                          H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                          H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                          H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                          H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                          H63 (3)
                           C1(3,4),
                                      C2(3,4), C3(3,4), C4(3,4),
 85
              DIMENSION
                                                                       C5(3,4),
                          C6 (3,4), C7 (3,4), C8 (3,4), C9 (3,4), C10 (3,4), C12 (3,4),
                          C13 (3,4), C14 (3,4), C15 (3,4), C16 (3,4), C17 (3,4),
                          C18(3,4), C19(3,4), C20(3,4), C21(3,4), C25(3,4),
                          C26 (3,4), C27 (3,4), C28 (3,4), C29 (3,4), C30 (3,4),
                          C31(3,4), C32(3,4), C33(3,4), C40(3,4), C41(3,4),
                          C42(3,4), C45(3,4), C46(3,4), C22(3,4), C60(3,4),
                          C61(3,4), C62(3,4), C63(3,4)
       C
 86
             DIMENSION IMP (5,5)
 87
             DIMENSION SPEED (5), ANGLE (5), SISL (5,5)
 88
             DIMENSION
                         TAC(5,5), SI(5,5)
 89
             INTEGER ERBORT
 90
             INTEGER TEMP1, TEMP2, X
 91
             INTEGER
                       HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
                       H16, H17, H22, H23, H24, H25, H26, H27, H30, H31, H32, H33, H34,
                       H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                       H51, H52, H60, H61, H62, H63
       C
 92
                       C1,C2,C3,C5,C6,C7,C8,C10,C12,C13,C14,C15,C16,C17,C18,
             INTEGER
                       c19,c20,c21,c22,c25,c26,c27,c28,c29,c30,c31,c32,c33,
                       C40,C41,C42,C60,C61,C62,C63,C9
       C
 93
             INTEGER SPEED, VEL
 94
             COMMON / MAIN5 / HIB, HI, CMB, CM, ACB, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
                                ACA, RMA, TACIMP, IZERO, LIFE, INT
 95
             CCMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
             COMMON/ CST1/COST1
 96
 97
             CCMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
      C
      C
 98
             CCMMON/ ENFRE /ENFR
      C
 99
             COMMON/ IDENT /I, J, II, JJ, ICARD, IFLAG, IMPR, NTITLE
      C
100
             CCMMON/ LATOF /OFSET
      C
      C
      C
101
             CCMMON/ IMPROB /IMP
      C
102
             COMMON/ GRSI /SIGR
      C
103
             CCMMON/ HUFT /PI,SI
      C
104
             CCMMON/ SLOPE1 /SISL
105
             CCMMON/ DATA1 /H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,
                              H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                              H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                              H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
      C
```

CCMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,

C

```
C22, C16, C17, C18, C19, C20, C21, C25, C26, C27, C28, C29, C30,
                              C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
       C
             CCMMON/ GRCRC / CS
107
             CCMMON/ ERBOR / ERROR 1
108
             REAL IMP
109
             OUTER CO-LOOP
       9999
             CCNTINUE
110
             DO 100 II=1,I
111
       C
112
             IFLAG = 1
             IF (II .EQ. 2) GO TO 10
113
             IF ( H22 (II) .EQ. 3) GO TO 12
114
             IF (H22(II) - EQ-2-AND-H14(II) - EQ-6-AND-H15(II) - EQ-6) GO TO 14
115
       C
             ERROR1(II,1) = 10
116
       C
             ERROR = 10 ... PROGRAM VALID ONLY FOR SLOPE AND GUARDRAIL
       C
              (W-EEAM ON STRONG POSTS) TYPE HAZARDS.
       C
       C
             GO TO 10
117
             CONTINUE
118
        12
       C
             CALL SLOPE
119
             GO TO 16
120
121
        14
             CONTINUE
             CALL WEEAM
122
             CCNTINUE
123
        16
             CALL FROB3
124
             CALL CCST3
125
             CALL FROB2
126
             CALL PROB1
127
             CALL FFFQ
128
             CALL HINDEX
129
             HIB = HIB + HI(II)
130
             IF (H22(II) .EQ. 3) GO TO 200
131
             CALL REPAIR
132
             CMB = CMB + CM
133
        200
             CCNTINUE
134
             CALL ACCID
135
             ACB = ACB + AC
136
       C
             RMB = FMB + C7(II,1)
137
             TACHAZ = TACHAZ + CMB + RMB
138
      C
139
        10
             CONTINUE
      C
             INNER CC-LCOP
      C
             DO 100 JJ=1,J
140
      C
141
             IFLAG = 2
             IF (C10 (II, JJ) . EQ. 4) GO TO 20
142
             IF (C10 (II, JJ) .EQ. 3 .AND. C12 (II, JJ) .EQ. 2) GO TO 22
143
             IF (C10(II,JJ) .EQ. 2 .AND. C12(II,JJ).EQ. 2) GO TO 24
144
             IF (C10 (II, JJ) .EQ. 3 .AND. C12 (II, JJ) .EQ. 1) GO TO 26
145
       C
146
             ERROR1(II,JJ) = 10
             GO TO 101
147
148
        24
             CCNTINUE
             IF(C13(II,JJ) .EQ. 1) GO TO 28
149
```

IF(C13(II,JJ) .EQ. 2 .CR. C13(II,JJ) .EQ. 3) GO TO 26

```
ERROR1(II,JJ) = 10
151
152
             GC TO 101
             CONTINUE
       20
153
             IF(II .EQ. 2) GO TO 21
154
             GO TO 29
155
             CCNTINUE
156
       21
             N = II-1
157
             IF (C13 (N, JJ) . EQ. 1) GO TO 29
158
             GC TO 28
159
             CCNIINUE
160
       29
             CALL NCIMPR
161
             CCNTINUE
162
       22
             CALL SLOPE
163
             GC TO 40
164
          26 CONTINUE
165
             CALL WEEAM
166
             C22(II,JJ) = (C25(II,JJ)+C26(II,JJ))/2.0
167
             GO TO 40
168
             CCNTINUE
169
       28
             REMOVE HAZARD
      C
      C
             CHI(II,JJ) = 0.0
170
             CMA(JJ) = 0.0
171
             RMA(JJ) = 0.0
172
             A(A(JJ) = 0.0
173
             C22(II,JJ) = H41(II+1)
174
             GO TO 50
175
             CCNTINUE
       40
176
             CALL PROB3
177
             CALL COST3
178
             CALL FROB2
179
             CALL PRCB1
180
             CALL FEEQ
181
             CALL HINDEX
182
             HIA(JJ) = HIA(JJ) + CHI(II,JJ)
183
             IF (C10(II, JJ) . EQ. 3 . AND. C12(II, JJ) . EQ. 2) GO TO 201
184
185
             CALL REPAIR
             CMA(JJ) = CMA(JJ) + CM
186
             CCNTINUE
187
       201
             CALL ACCID
188
             ACA(JJ) = ACA(JJ) + AC
189
      C
             RMA(JJ) = RMA(JJ) + C8(II,JJ)
190
191
       50
             CCNTINUE
             CALL IMPCST
192
             TACIMF(JJ) = TACIMP(JJ) + COST1(JJ) + CMA(JJ) + RMA(JJ)
193
      C
             THIS IS THE END OF OUTER AND INNER DO-LOOPS
      C
             CCNTINUE
194
       101
             CCNTINUE
195
       100
      C
      C
       9998 RETURN
196
             END
197
      C
      C
      C
      C
      C
```

```
C
       C
       C
       C
       C
 198
              SUBROUTINE RESULT
       C
       C
       C
       C
          SUBROUTINE CALCULATES COST-EFFECTIVENESS VALUES AND BENIFIT-COST RATIO
       C
       C
 199
              DIMENSION HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
                        ERROR1(3,4), CS(5,5), IZERO(4)
200
              DIMENSICN TTAC(4), CE(4), BC(4), ICE(4), ITAC(4), NOTCE(4)
201
              DIMENSICN COST1 (4), NDES (100), NHWY (100), NSPD (100), NADT (100)
202
              DIMENSICN OFSET (5)
203
              DIMENSICN SIGR (5,5)
204
              DIMENSION PI(5,5)
205
                         HO(3), H1(3), H2(3), H3(3), H4(3), H5(3), H6(3),
              DIMENSION
                                   H8(3), H9(3), H10(3), H11(3), H12(3),
                         H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                         H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                         H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                         H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                         H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                         H50(3), H51(3), H52(3), H60(3), H61(3),
                         H63(3)
206
             DIMENSION
                          C1(3,4),
                                     C2(3,4), C3(3,4), C4(3,4),
                         C6 (3,4), C7 (3,4), C8 (3,4), C9 (3,4), C10 (3,4), C12 (3,4),
                         C13(3,4), C14(3,4), C15(3,4), C16(3,4), C17(3,4),
                         C18(3,4), C19(3,4), C20(3,4), C21(3,4), C25(3,4),
                         C26(3,4), C27(3,4), C28(3,4), C29(3,4), C30(3,4),
                         C31(3,4), C32(3,4), C33(3,4), C40(3,4), C41(3,4),
                         C42(3,4), C45(3,4), C46(3,4), C22(3,4), C60(3,4),
                         C61(3,4), C62(3,4), C63(3,4)
       C
207
             DIMENSION IMP(5,5)
208
             DIMENSICN SPEED (5), ANGLE (5), SISL (5,5)
209
             DIMENSION
                         TAC(5,5), SI(5,5)
210
             INTEGER ERBOR1
211
             INTEGER TEMP1, TEMP2, X
212
             INTEGER
                       HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
                       H16, H17, H22, H23, H24, H25, H26, H27, H30, H31, H32, H33, H34,
                       H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                       H51, H52, H60, H61, H62, H63
      C
213
             INTEGER
                       C1,C2,C3,C5,C6,C7,C8,C10,C12,C13,C14,C15,C16,C17,C18,
                       C19,C20,C21,C22,C25,C26,C27,C28,C29,C30,C31,C32,C33,
                       C40, C41, C42, C60, C61, C62, C63, C9
      C
214
             INTEGER SPEED, VEL
215
             CCMMON / MAIN5 / HIB, HI, CMB, CM, ACE, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
                               ACA, RMA, TACIMP, IZERO, LIFE, INT
216
             COMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
217
             CCMMON/ CST1/COST1
218
             COMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
      C
      C
```

CCMMON/ ENFRE /ENFR

```
C
 220
              CCMMON/ IDENT /I, J, II, JJ, ICARD, IFLAG, IMPR, NTITLE
        C
 221
              CCMMON/ LATOF /OFSET
       C
       C
       C
 222
              CCMMON/ IMPROB /IMP
       C
 223
              CCMMON/ GRSI /SIGR
       C
 224
              CCMMON/ HURT /PI,SI
       C
 225
              CCMMON/ SLOPE1 /SISL
 226
              CCMMON/ DATA1 /HO,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,
                               H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                               H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                               H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
       C
       C
       C
 227
              CCMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
                          C22, C16, C17, C18, C19, C20, C21, C25, C26, C27, C28, C29, C30,
                               C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
       C
228
              CCMMON/ GRCRC / CS
              CCMMON/ ERROR /ERROR1
229
230
              REAL IMP
231
              REAL KZERO
232
              REAL INT, LIFE
       C
       C
       9999
233
             CCNTINUE
       C
       C
234
             DO 100 JJ=1,J
235
             EFFECT = HIB - HIA(JJ)
236
             KZERO = 2.718**(-1*(ABS(EFFECT)*LIFE))*100.
237
             IZERO(JJ) = KZERO
238
             IF ( HIA (JJ) .GE. HIB) GO TO 10
      C
             IF ( EFFECT .LT. 0.035) GO TO 10
239
             TTAC(JJ) = TACIMP(JJ) - TACHAZ
240
             ITAC(JJ) = TTAC(JJ)
241
             CE(JJ) = TTAC(JJ) / EFFECT
242
             ICE(JJ) = CE(JJ)
243
             BC(JJ) = (ACB - ACA(JJ)) / (TTAC(JJ))
244
             IF (ACA(JJ) -GE- ACB) GO TO 10
245
             GO TO 100
246
          10 CCNTINUE
247
             NOTCE(JJ) = 1
      C
          NOTCE=1 ... IMPROVEMENT ALTERNATIVE NOT COST-EFFECTIVE
      C
248
         100 CONTINUE
      C
249
       9998 RETURN
250
             END
      C
      C
```

```
106
      C
251
            SUEROUTINE IMPCST
      C
      C
            THIS SUBROUTINE COMPUTES ANNUALIZED FIRST COSTS
         C
252
            DIMENSION HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
                       ERROR1(3,4), CS(5,5), IZERO(4)
253
            DIMENSION TTAC(4), CE(4), BC(4), ICE(4), ITAC(4), NOTCE(4)
254
            DIMENSICH COST1 (4), NDES (100), NHWY (100), NSPD (100), NADT (100)
255
            DIMENSION OFSET (5)
256
            DIMENSION SIGR (5,5)
257
            DIMENSION PI(5,5)
258
                        HO(3), H1(3), H2(3), H3(3), H4(3), H5(3), H6(3),
            DIMENSICN
                         H7(3), H8(3), H9(3), H10(3), H11(3), H12(3),
                        H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                        H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                        H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                        H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                        H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                        H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                        H63(3)
259
            DIMENSICN
                         C1(3,4), C2(3,4), C3(3,4), C4(3,4),
                                                                  C5(3,4),
                        C6 (3,4), C7 (3,4), C8 (3,4), C9 (3,4), C10 (3,4), C12 (3,4),
                        C13(3,4), C14(3,4), C15(3,4), C16(3,4), C17(3,4),
                        C18(3,4), C19(3,4), C20(3,4), C21(3,4), C25(3,4),
                        C26(3,4), C27(3,4), C28(3,4), C29(3,4), C30(3,4),
                        C31(3,4), C32(3,4), C33(3,4), C40(3,4), C41(3,4),
                        C42(3,4), C45(3,4), C46(3,4), C22(3,4), C60(3,4),
                        C61(3,4); C62(3,4); C63(3,4)
      C
260
            DIMENSION IMP (5,5)
261
            DIMENSION SPEED (5), ANGLE (5), SISL (5,5)
262
            DIMENSION
                        TAC (5,5), SI(5,5)
263
            INTEGER ERBOR1
264
            INTEGER TEMP1, TEMP2, X
                      HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
265
            INTEGER
                      H16, H17, H22, H23, H24, H25, H26, H27, H30, H31, H32, H33, H34,
                      H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                      H51, H52, H60, H61, H62, H63
      C
                      C1,C2,C3,C5,C6,C7,C8,C10,C12,C13,C14,C15,C16,C17,C18,
266
            INTEGER
                      C19,C20,C21,C22,C25,C26,C27,C28,C29,C30,C31,C32,C33,
                      C40,C41,C42,C60,C61,C62,C63,C9
      C
267
            INTEGER SPEED, VEL
            CCMMON / MAIN5 / HIB, HI, CMB, CM, ACB, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
268
                              ACA, RMA, TACIMP, IZERO, LIFE, INT
269
            COMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
270
            COMMON/ CST1/COST1
271
            COMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
      C
      C
272
            CCMMON/ ENFRE /ENFR
      C
273
            COMMON/ IDENT /I, J, II, JJ, ICARD, IFLAG, IMPR, NTITLE
```

```
107
```

```
C
274
             CCMMON/ LATOR /OFSET
       C
       C
       C
             CCMMON/ IMPROB /IMP
275
       C
276
             CCMMON/ GRSI /SIGB
       C
277
             COMMON/ HUET /PI,SI
       C
278
             COMMON/ SLOPE1 /SISL
279
             COMMON/ DATA1 /HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13,
                               H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                               H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                               H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
       C
       C
       Ċ
280
             CGMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
                          C22,C16,C17,C18,C19,C20,C21,C25,C26,C27,C28,C29,C30,
                               C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
       C
281
             CCMMON/ GRCRC / CS
282
             COMMON/ ERROR /ERROR 1
283
             REAL IMP
       C
284
             REAL INT, LIFE
      C
       9999
285
             CONTINUE
286
             IF (JJ .GT. 1) GO TO 10
       C
             INTEREST BATE (INT)
287
             INT = 0.090
       C
      C
             LIFE OF PROJECT IN YEARS (LIFE)
288
             LIFE = 20-0
      C
289
             T1 = (1.0 + INT) **LIFE
290
             T2 = T1 * INT
291
             T3 = T1 - 1.0
      C
      C
             CAPITAL RECOVERY FACTOR (CRF)
      C
292
             CRF = T2/T3
      C
293
        10
             CCNTINUE
294
             COST1(JJ) = C4(II,JJ) * CRF
295
       9998 RETURN
296
             END
      C
      C
      C
297
             SUBROUTINE OUTPUT
      C
      C
```

SUBROUTINE PRINTS OUTPUT

```
298
             DIMENSION HI(3) "HIA(4) "CHI(3",4)" CMA(4) "ACA(4) "BMA(4) "TACIMP(4)"
                        ERROR1(3,4),CS(5,5),IZERO(4)
299
             DIMENSION TTAC(4), CE(4), BC(4), ICE(4), ITAC(4), NOTCE(4)
             DIMENSICH COST1(4), NDES(100), NHWY(100), NSPD(100), NADT(100)
300
301
             DIMENSION OFSET (5)
             DIMENSION SIGR (5,5)
302
303
             DIMENSION PI(5,5)
304
             DIMENSION
                         HO(3), H1(3), H2(3), H3(3), H4(3), H5(3), H6(3),
                                  H8(3), H9(3), H10(3), H11(3), H12(3),
                          H7(3),
                         H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                         H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                         H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                         H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                         H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                         H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                         H63 (3)
                          C1 (3,4)
305
             DIMENSION
                                    C2(3,4),
                                               C3(3,4), C4(3,4), C5(3,4),
                          C6 (3,4),
                                    c7(3,4),
                                               C8(3,4), C9(3,4), C10(3,4),
                         C12(3,4), C13(3,4), C14(3,4), C15(3,4), C16(3,4),
                         C17 (3,4), C18 (3,4), C19 (3,4), C20 (3,4), C21 (3,4),
                         C25 (3,4), C26 (3,4), C27 (3,4), C28 (3,4), C29 (3,4),
                         C30(3,4), C31(3,4), C32(3,4), C33(3,4), C40(3,4),
                         C41(3,4), C42(3,4), C45(3,4), C46(3,4), C22(3,4),
                         C60(3,4), C61(3,4), C62(3,4), C63(3,4)
      C
306
             DIMENSICN IMP (5.5)
307
             DIMENSION SPEED (5) , ANGLE (5) , SISL (5,5)
308
             DIMENSION
                         TAC(5,5), SI(5,5)
             INTEGER ERROR1
309
310
             INTEGER TEMP1, TEMP2, X
                      HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
311
             INTEGER
                      H16, H17, H22, H23, H24, H25, H26, H27, H30, H31, H32, H33, H34,
                      H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                      H51, H52, H60, H61, H62, H63
      C
                      C1,C2,C3,C5,C6,C7,C8,C10,C12,C13,C14,C15,C16,C17,C18,
312
            INTEGER
                      C19,C20,C21,C22,C25,C26,C27,C28,C29,C30,C31,C32,C33,
                      C40,C41,C42,C60,C61,C62,C63,C9
      C
313
             INTEGER SPEED, VEL
314
             COMMON / MAIN5 / HIB, HI, CMB, CM, ACB, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
                               ACA, RMA, TACIMP, IZERO, LIFE, INT
            CCMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
315
316
             COMMON/ CST1/COST1
317
             CCMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
      C
      C
318
            CCMMON/ ENFRE /ENFR
      C
             COMMON/ IDENT /I,J,II,JJ,ICARD,IFLAG,IMPR,NTITLE
319
      C
320
            CCMMON/ LATOF /OFSET
      C
      C
      C
321
            CCMMON/ IMPROB /IMP
      C
322
            CCMMON/ GRSI /SIGR
      C
323
            CCMMON/ HURT /PI,SI
```

```
109
```

```
324
             COMMON/ SLOPE1 /SISL
             CCMMON/ DATA1 /HO,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,
325
                              H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                              H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                              H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
      C
      C
      C
326
             CCHMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
                          C22, C16, C17, C18, C19, C20, C21, C25, C26, C27, C28, C29, C30,
                              C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
327
             COMMON/ GRCRC / CS
328
             COMMON/ ERROR / ERROR 1
329
             REAL INT, LIFE
330
             REAL IMP
      9999
331
             CCNTINUE
             IF (NCOUNT .EQ. 0) GO TO 10
332
      C
      C
333
             N = NTITLE
334
             M = NTITLE-1
             IF (NDES (N) .EQ. NDES (M) .AND. NHWY (N) .EQ. NHWY (M) .AND.
335
            *NSPD(N) .EC. NSPD(M) .AND. NADT(N) .EQ. NADT(M)) GO TO 12
      C
          10 CONTINUE
336
337
             WRITE (6,398) IPAGE
338
             WRITE (6,400)
      C
                 (C60(1,1)_EQ.1) GO TO 800
339
             IF
340
                 (C60(1,1).EQ.2)
                                  GC TO 801
             IF
                 (C60(1,1)-EQ-3) GO TO 802
341
                 (C60(1,1).EQ.4) GO TO 803
342
             IF (C60 (1,1).EQ.5) GO TO 804
343
344
       800
             CONTINUE
345
             WRITE (6,900) C61(1,1)
             GO TO 905
346
347
       801
             CONTINUE
             WRITE (6,901) C61(1,1)
348
349
             GO TO 905
350
       802
             CONTINUE
351
             WRITE (6,902) C61(1,1)
352
             GO TO 905
353
       803
             CCNTINUE
354
             WRITE (6,903) C61(1,1)
             GO TO 905
355
356
       804
             CONTINUE
357
             WRITE (6,904) C61(1,1)
       905
             CONTINUE
358
                                 1) GC TO 810
                           .EQ.
359
             IF
                (C62(1,1)
                 (C62(1,1) -EQ- 2) GO TO 811
360
                 (C62(1,1) .EQ. 3) GO TO 812
361
             IF (C62(1,1) .EQ. 4) GC TO 813
362
       810
363
             CCNTINUE
             WRITE (6,910) C63(1,1)
364
             GO TO 915
365
366
       811
             CCNTINUE
             WRITE (6,911) C63(1,1)
367
368
             GO TO 915
369
        812
             CCNTINUE
```

WRITE (6,912) C63(1,1)

```
371
             GO TO 915
372
       813
             CCNTINUE
373
             WRITE (6,913) C63(1,1)
374
       915
             CONTINUE
375
             INT = INT*100_0
376
             WRITE (6,815) C3(1,1), C9(1,1), LIFE, INT, H50(1), H51(1),
            *H52(1)
377
             INT = INT/100.0
             IPAGE = IPAGE + 1
378
379
             LINES = 0
380
             NCCUNI = NCOUNT + 1
381
             WRITE (6,404) IPAGE
382
             WRITE (6,406)
383
          12 CONTINUE
384
             MES = 0
385
             K = 0
      C
386
             DO 200 JJ=1,J
387
             DO 200 II=1,I
      C
388
             L = II
389
             M = JJ
390
             IF (ERROR1 (L.M) .GT. 0) GO TO 80
391
             K = K + 1
392
             IF (K . EC. I) GO TO 60
         WRITE "GROUP"
393
             WRITE (\epsilon,500) H13(L), H17(L), H14(L), H15(L), HI(L),
            *H16(L), H18(L), H19(L), M, C10(L,M), C12(L,M), C13(L,M),
            *CHI(L, M), C22(L, M), C4(L, M)
394
             GO TO 200
395
         80 CCNTINUE
         WRITE "ERROR MESSAGE NUMBER"
396
             WRITE (6,502) H13(L), H17(L), H14(L), H15(L), H1(L),
            *H16(L), H18(L), H19(L), M, C10(L,M), C12(L,M), C13(L,M),
            *CHI(L, M), C22(L, M), C4(L, M), ERROR1(L, M)
397
             K = K + 1
             IF (K . EQ. I) GO TO 90
398
399
             MES = MES + 1
400
             GO TO 200
      C
401
          60 CONTINUE
             IF ( NOICE (M) -EQ- 1) GO TO 70
402
             IF ( MES .GE. 1) GO TO 85
403
          WRITE "COST-EFFECTIVENESS VALUE" AND "BENEFIT-COST RATIO"
      C
404
             WRITE (6,504) H13(L), H17(L), H14(L), H15(L), HI(L),
            *H16(L), H18(L), H19(L), M, C10(L,M), C12(L,M), C13(L,M),
            *CHI(L,M), C22(L,M), C4(L,M), ITAC(M), ICE(M), IZERO(M),BC(M)
      C
      C
         LINE CCUNTER
405
             LINES = LINES + 1
406
             IF ( LINES .GE. 45) GO TO 92
407
             GO TO 90
408
         92 CONTINUE
409
             WRITE (6,404) IPAGE
410
             WRITE (6,406)
411
             LINES = 0
412
             GO TO 90
413
          70 CONTINUE
        WRITE "NCT COST-EFFECTIVE"
414
             WRITE (6,506) H13(L), H17(L), H14(L), H15(L), HI(L),
```

```
111
```

```
*H16(L), H18(L), H19(L), M, C10(L,M), C12(L,M), C13(L,M),
            *CHI(L,M), C22(L,M), C4(L,M)
      C
      C
         LINE COUNTER
      C
415
             LINES = LINES + 1
416
             IF ( LINES .GE. 45) GO TO 93
417
             GO TO 90
418
          93 CCNTINUE
419
             WRITE (6,404) IPAGE
420
             WRITE (6,406)
421
             LINES = 0
422
             GO TO 90
      C
423
          85 CCNTINUE
      C
          WRITE "END GROUP"
424
             WRITE (6,508) H13(L), H17(L), H14(L), H15(L), HI(L),
            *H16(L), H18(L), H19(L), M, C10(L,M), C12(L,M), C13(L,M),
            *CHI(L,M), C22(L,M), C4(L,M)
      C
      C
         LINE COUNTER
      C
425
             LINES = LINES + 1
             IF ( LINES .GE. 45) GO TO 94
426
427
             GO TO 90
428
          94 CCNTINUE
429
             WRITE (6,404) IPAGE
430
             WRITE (6,406)
431
             LINES = 0
432
          90 CCNTINUE
433
             K = 0
434
             MES = 0
435
             WRITE (6,600)
436
        200 CCNTINUE
437
             WRITE (6,602)
      C
             IF (IGR . EQ. 1) GO TO 300
438
439
             BRITE (6,604)
440
        300 CONTINUE
      C
      C
        **** FORMAT STATEMENTS ****
                                                       EFFECTIVENESS
441
                           ///////, T42, 'C O S T
        400 FORMAT (
            * P R O G R A M', ///, T57, 'UNIVERSITY OF NEBRASKA', /, T67,
          * 'AND', /, T54, 'NEERASKA DEPARTMENT OF ROADS', ////)
      C
      C
            FORMAI (1H1,/, I122, 'PAGE = ', I2,///, T22, 'H
                                                                              D'
442
       404
                                                                     A
                                                                          R
                                                                 Z
                                                             A
                                      V
                                            E
                                                 M
                                                     E
            *T78. I
                      M
                           P
                               R
                                    0
      C
      C
      C
443
             FORMAT (12, 'HAZARD', T9, 'GROUP', T15, 'IDENT', T21, 'DESC', T27,
       406
            * 'HAZARD', T35, 'SIDE', T42, 'MILE-POST', T59, 'IMPR', T65, 'IMPR',
            *T72, 'HAZARD', T81, 'CLEAR', T90, 'FIRST', T98, 'TOTAL', T107, 'COST',
            *T117, 'ZERO', T125, 'BENEFIT', /, T4, 'NO', T11, 'NO', T16, 'CODE', T21,
            *'CODE',T28,'INDEX',T36,'OF',T60,'ALT',T65,'CODE',T73,'INDEX',
            *T80, 'RECOVERY', T91, 'COST', T98, 'ANNUAL', T105, 'EFFECTIVE', T115,
            *'ACCIDENT',T126,'COST',/,T35,'ROAD',T41,'BEG',T49,'END',T82,
            *'ZONE', T99, 'COST', T107, 'VALUE', T115, 'REDUCTION', T126, 'RATIO',
```

```
112
           */,126, '(INJ/YR)',T71, '(INJ/YR)',T82, '(FT)',T89, '($1000)',
           *T98,'($/YR)',T118,'(%)',/)
444
       500
            FORMAT (13,14,T10,13,T17,12,T22,12,T25,F8.5,T36,11,T39,F7.3,
           *T47,F7.3,T61,I1,T65,I1,T66,'-',T67,I1,T68,'-',T69,I1,T71,F8.5,
           445
            FORMAT (T3, 14, T10, I3, T17, I2, T22, I2, T25, F8. 5, T36, I1, T39, F7. 3,
           *T47,F7.3,T61,I1,T65,I1,T66,'-',T67,I1,T68,'-',T69,I1,T71,F8.5,
           *T83,I2,T90,F6.1,T97, *********ERROR MESSAGE = 'I2, *********)
       504
446
            FORMAT (13,14,T10,13,T17,12,T22,12,T25,F8.5,T36,11,T39,F7.3,
           *T47,F7.3,T61,I1,T65,I1,T66,'-',T67,I1,T68,'-',T69,I1,T71,F8.5,
           *T83,12,T90,F6.1,T98,16,T106,16,T117,14,T126,F6.1)
447
            FORMAT (T3, 14, T10, I3, T17, I2, T22, I2, T25, F8.5, T36, I1, T39, F7.3,
           *T47,F7.3,T61,I1,T65,I1,T66,'-',T67,I1,T68,'-',T69,I1,T71,F8.5,
           *T83,12,T90,F6.1,T97, '----NOT COST-EFFECTIVE-----')
448
       508
            FORMAT (13,14,T10,13,T17,12,T22,12,T25,F8.5,T36,11,T39,F7.3,
           *T47,F7.3,T61,I1,T65,I1,T66,'-',T67,I1,T68,'-',T69,I1,T71,F8.5,
           449
       600
            FCRMAT (/)
      C
450
       602
            FORMAT (//)
      C
451
       604
            FCRMAT (//, T61, ******END OF PRCGRAM******/1H1)
      C
452
       398
            FCEMAT(1H1,/,T122,'PAGE = ',T128,I2)
      C
453
       900
            FCRMAT (T52, HIGHWAY DESIGN NUMBER = DR-1,12)
      C
454
       901
            FORMAT (152, 'HIGHWAY DESIGN NUMBER = DM-', 12)
      C
455
       902
            FORMAT (152, 'HIGHWAY DESIGN NUMBER = ROA-', 12)
      C
456
       903
            FORMAT (152, 'HIGHWAY DESIGN NUMBER = RC-', 12)
      C
457
       904
            FORMAT (T52, HIGHWAY DESIGN NUMBER = RL-1, 12)
      C
458
       910
            FORMAT (161, 'TYPE HIGHWAY = US-', 13)
      C
459
       911
            PCRMAT(161, 'TYPE HIGHWAY = NH-', I3)
460
       912
            FORMAT (T61, 'TYPE HIGHWAY = IS-', I3)
      C
461
       913
            PCRMAT (161, 'TYPE HIGHWAY = RUR-', 13)
      C
       815
            FCRMAT (161, DESIGN SPEED = ',T76,12,T79, MPH',/,T70,
462
           *'ADT = ',T76,I5,/,T61,'PROJECT LIFE = ',T76,F4.1,T81,'YRS',
           */,T60,'INTEREST RATE = ',T76,F5.3,T82,'%',/,T69,'DATE = ',
           *T76,I2,T78,'-',T79,I2,T81,'-',T82,I2,////)
463
       9998 RETURN
464
            END
      C
```

```
C
      C
465
            SUBROUTINE PREC
      C
      C
        --- THIS SUEROUTINE CALCULATES THE ENCROACHMENT FREQUENCY OF A GIVEN
      C
            ROADWAY.
                       TWO PARAMETERS ARE REQUIRED FROM THE INPUT FORM,
                HIGHWAY DESIGN NUMBER--HO
                RURAL OR URBAN CLASS---H3
            THE ENCROACHMENT FREQUENCY'S ARE EXPRESSED IN #/MILE-YEAR
      C
      C
      C
         --- NOTE
                   THE FOLLOWING ROADWAY TYPES WILL HAVE A CORRECTION FACTOR
      C
                   APPLIED TO THE DHY BASED ON WHETHER THE ROADWAY IS RURAL OR*
      C
                   URBAN
              DRO 1----RURAL INTERSTATE-DHV IS 15 PERCENT OF ADT
               DRO 2 ---- MULTILANE-IF RURAL, DHY IS 15 PERCENT OF ADT.
      C
                                                                            IF
                          URBAN, DHV IS 10 PERCENT OF ADT.
      C
      C
               DRO 4-DRO 7-RURAL TWO LANE-DHY IS 15 PERCENT OF ADT
      C
               CM10-DM20--URBAN INTERSTATE-DHV IS 10 PERCENT OF ADT
               DM30-EM40--MULTILANE-IF RURAL, DHV IS 15 PERCENT OF ADT.
      C
      C
                          URBAN, DHV IS 10 PERCENT OF ADT.
      C
      C
            SOURCE
                    AASHO, 1965. AASHTO, 1973
      C
            SOURCE OF ADT AND DRY VALUES: MINIMUM DESIGN STANDARDS, NEBRASKA
      C
            FOR DM10, DM20, DM30, AND DM40 ARE ASSUMED TO BE FOUR LANES,
      C
      C
            TWO LANES IN EACH DIRECTION WITH SIGNAL CONTROL
      C
466
            DIMENSION HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
                       FREGR1 (3,4), CS (5,5), IZERO (4)
467
            DIMENSION TTAC (4), CE (4), BC (4), ICE (4), ITAC (4), NOTCE (4)
            DIMENSICN COST1 (4), NDES (100), NHWY (100), NSPD (100), NADT (100)
468
469
            DIMENSION OFSET (5)
470
            DIMENSION SIGR (5,5)
            DIMENSION PI(5,5)
471
                        HO(3), H1(3), H2(3), H3(3), H4(3),
472
            DIMENSICN
                                                           H5(3),
                         H7(3), H8(3), H9(3), H10(3), H11(3), H12(3),
                        H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                        H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                        H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                        H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                        H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                        H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                        H63 (3)
473
            DIMENSION
                         C1(3,4),
                                   C2(3,4), C3(3,4), C4(3,4), C5(3,4),
                        C6 (3,4), C7 (3,4), C8 (3,4), C9 (3,4), C10 (3,4), C12 (3,4),
                        C13(3,4), C14(3,4), C15(3,4), C16(3,4), C17(3,4),
                        C18(3,4), C19(3,4), C20(3,4), C21(3,4), C25(3,4),
                        C26 (3,4), C27 (3,4), C28 (3,4), C29 (3,4), C30 (3,4),
                        C31(3,4), C32(3,4), C33(3,4), C40(3,4), C41(3,4),
                        C42(3,4), C45(3,4), C46(3,4), C22(3,4), C60(3,4),
                        C61(3,4), C62(3,4), C63(3,4)
```

```
114
```

```
475
              DIMENSION SPEED (5), ANGLE (5), SISL (5,5)
                          TAC (5,5), SI (5,5)
476
              DIMENSION
477
              INTEGER ERROR1
478
              INTEGER TEMP1, TEMP2, X
479
              INTEGER
                        HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
                        H16, H17, H22, H23, H24, H25, H26, H27, H30, H31, H32, H33, H34,
                        H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                        H51, H52, H60, H61, H62, H63
       C
480
                        C1,C2,C3,C5,C6,C7,C8,C10,C12,C13,C14,C15,C16,C17,C18,
             INTEGER
                        C19,C20,C21,C22,C25,C26,C27,C28,C29,C30,C31,C32,C33,
                        C40,C41,C42,C60,C61,C62,C63,C9
       C
481
             INTEGER SPEED, VEL
482
             CCMMON / MAIN5 / HIB, HI, CMB, CM, ACB, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
                                 ACA, RMA, TACIMP, IZERO, LIFE, INT
483
             CCMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
484
             COMMON/ CST1/COST1
485
             COMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
      C
       C
486
             CCMMON/ ENFRE /ENFR
      C
487
             CCMMON/ IDENT /I, J, II, JJ, ICARD, IFLAG, IMPR, NTITLE
      C
488
             COMMON/ LATOF /OFSET
      C
      C
      C
489
             CCMMON/ IMPROB /IMP
      C
490
             CCMMON/ GRSI /SIGR
      C
             CCMMON/ HURT /PI,SI
491
      C
492
             CCMMON/ SLOPE1 /SISL
493
             CCMMON/ DATA1 /H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,
                              H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                              H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                              H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
      C
      C
      C
494
             CCMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
                          C22,C16,C17,C18,C19,C20,C21,C25,C26,C27,C28,C29,C30,
                              C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
      C
495
             COMMON/ GRCRC / CS
496
             CCMMON/ ERROR / ERROR 1
497
             REAL IMP
498
      9999
             CCNTINUE
499
             IF (IF LAG . EQ. 1) GO TO 49
500
             HO(II) = C1(II,JJ)
501
             ADT = C9(II_{\bullet}JJ)
             GO TO 51
502
503
        49
             ADT = E3(II)
      C
      C
      C
             CHECK FOR HIGHWAY DESIGN NUMBER AND ASSIGN ENCROACHMENT FREQUENCY
```

```
VALUE WHICH IS CORRECTED FOR RURAL OR URBAN CLASSIFICATION.
      C
       C
       C
        --- IS HIGHWAY DRO1?
             IF (HO (II) . NE. 101) GO TO 10
504
        51
505
             ENFR = 0.00090*ADT
506
             GO TO 1000
       C
        --- IS HIGHWAY DRO2?
       C
507
          10 IF (HO (II) . NE. 102) GO TO 20
      C
      C
      C
      C
508
             ENFR = 0.00090*ADT
509
             GO TO 1000
      C
      C
      C
      C --- IS HIGHWAY DRO4?
510
          20 IF (HO (II) . EQ. 104) GO TO 3
511
             GO TO 30
      C
512
       3
             ENFR = 0.000590*ADT
             GC TO 1000
513
      C --- IS HIGHWAY DROS?
514
          30 IF (HO (II) - EQ- 105) GO TO 4
515
             GO TO 40
      C
516
             ENFR = 0.000742*ADT
517
             GO TO 1000
      C --- IS HIGHRAY DROG?
518
          40 IF (HO (II) . EQ. 106) GO TO 5
519
             GO TO 50
      C
520
       5
             ENFR = 0.000742*ADT
             GO TO 1000
521
      C
      C --- IS HIGHWAY DRO7?
522
          50 IF (HO (II) . EQ. 107) GO TO 6
523
             GO TO 60
      C
524
             ENFR = 0.00121*ADT
       6
525
             GO TO 1000
      C --- IS HIGHWAY DM10 OR DM20
          60 IF (HO (II) .EQ. 210. CR. HO (II) .EQ. 220) GO TO 7
526
527
             GO TO 70
528
       7
             ENFR = 0.00090*ADT
             GO TO 1000
529
      C
         --- IS HIGHWAY DM30 OR DM40?
      C
      C
       70
530
             CCNTINUE
             ENFR = 0.00090*ADT
531
       C
```

```
532
       1000 CONTINUE
     C
533
      9998 RETURN
534
           END
     C
535
           SUBROUTINE PROB1
     C
     C
     C
           THIS SUBROUTINE CALCULATES LATERAL OFFSET PROBABILITIES FOR THE
     C
           FIVE DIFFERENT ENCROACHMENT ANGLES AND STORES THEM IN ARRAY OFSET.
     C
           THE FOLLOWING ASSUMPTION WAS MADE:
     C
               IF THE FRONT SLOPE IS 2:1 OR 3:1 IT IS A CERTAINTY THE VEHICLE
     C
               WILL IMPACT DITCH BOTTOM.
                                         THEREFORE, THE PROBABILITY OF
     C
               REACHING THE HINGE POINT IS ASSIGNED.
                                                     FOR 4:1 AND 6:1 FRONT
     C
               SLOPES THE PROBABILITY OF GETTING TO DITCH BOTTOM IS ASSIGNED.
     C
     C
536
           DIMENSIGN HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
                     ERROR1(3,4), CS(5,5), IZERO(4)
537
           DIMENSION TTAC(4), CE(4), BC(4), ICE(4), ITAC(4), NOTCE(4)
538
           DIMENSICN COST1(4), NDES(100), NHWY(100), NSPD(100), NADT(100)
539
           DIMENSION OFSET (5)
540
           DIMENSION SIGR (5,5)
541
           DIMENSION PI(5,5)
                      HO(3), H1(3), H2(3), H3(3), H4(3), H5(3), H6(3),
542
           DIMENSION
                              H8 (3), H9 (3), H10 (3), H11 (3), H12 (3),
                      H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                      H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                      H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                      H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                      H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                      H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                      H63(3)
                       C1(3,4),
543
           DIMENSICN
                                C2(3,4), C3(3,4), C4(3,4), C5(3,4),
                      C6 (3,4), C7 (3,4), C8 (3,4), C9 (3,4), C10 (3,4), C12 (3,4),
                      C13(3,4), C14(3,4), C15(3,4), C16(3,4), C17(3,4),
                      C18(3,4), C19(3,4), C20(3,4), C21(3,4), C25(3,4),
                      C26(3,4), C27(3,4), C28(3,4), C29(3,4), C30(3,4),
                      C31(3,4), C32(3,4), C33(3,4), C40(3,4), C41(3,4),
                      C42(3,4), C45(3,4), C46(3,4), C22(3,4), C60(3,4),
                      C61(3,4), C62(3,4), C63(3,4)
     C
544
           DIMENSION IMP (5,5)
545
           DIMENSICN SPEED (5), ANGLE (5), SISL (5,5)
                      TAC(5,5), SI(5,5)
546
           DIMENSION
547
           INTEGER ERFOR1
548
           INTEGER TEMP1, TEMP2, X
549
                    HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
           INTEGER
                    H16,H17,H22,H23,H24,H25,H26,H27,H30,H31,H32,H33,H34,
                    H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                    H51, H52, H60, H61, H62, H63
     C
550
                    C1, C2, C3, C5, C6, C7, C8, C10, C12, C13, C14, C15, C16, C17, C18,
           INTEGER
```

```
C40,C41,C42,C60,C61,C62,C63,C9
      C
551
             INTEGER SPEED, VEL
             CCMMON / MAIN5 / HIB, HI, CMB, CM, ACB, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
552
                               ACA, RMA, TACIMP, IZERO, LIFE, INT
553
             COMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
554
             COMMON/ CST1/COST1
555
             COMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
      C
      C
556
             CCMMON/ ENFRE /ENFR
      C
557
             COMMON/ IDENT /I, J, II, JJ, ICARD, IFLAG, IMPR, NTITLE
      C
558
             CCMMON/ LATOR /OFSET
      C
      C
      C
559
             CCMMON/ IMPROB /IMP
      C
560
             COMMON/ GRSI /SIGR
      C
561
             CCMMON/ HURT /PI,SI
      C
562
             CCMMON/ SLOPE1 /SISL
             COMMON/ DATA1 /HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13,
563
                             H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                             H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                             H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
      C
      C
      C
564
             CCMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
                         C22,C16,C17,C18,C19,C20,C21,C25,C26,C27,C28,C29,C30,
                             C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
      C
565
             CCMMON/ GRCRC / CS
566
             CCMMON/ ERROR /ERRCR 1
567
             REAL IMP
      C
      C
      C
        --- IF IFLAG IS 1--HAZARD.
                                      IF IFLAG IS 2--IMPROVEMENT.
      9999
568
             CCNTINUE
569
             IF (IFLAG. EQ. 2) GO TO 20
570
             IF (H22(II) .EQ. 3) GO TO 11
             TEMP2 = (H30(II) + H31(II))/2.0
571
572
             GO TO 31
      C
      C
        --- TEMP1 CONTAINS FRONT SLOPE.
      C
        --- TEMP2 CCNTAINS LATERAL OFFSET OF HINGE POINT.
      C
573
         11 TEMP1= H42 (II)
574
             TEMP2 = E41(II)
575
             GO TO 30
      C
      C
        --- IF C12(II,JJ) IS 1--GUARDRAIL IS SUGGESTED IMPROVEMENT.
        --- IF C12(II,JJ) IS 2--SLCPE MODIFICATION.
576
         20 IF (C10 (II, JJ) - EQ. 3- AND - C12 (II, JJ) - EQ. 1) GO TO 21
```

```
118
```

```
577
               IF (C10 (II, JJ) . EQ. 3. AND. C12 (II, JJ) . EQ. 2) GO TO 22
               IF (C10 (II,JJ) . EQ. 2. AND.C12 (II,JJ) . EQ. 2. AND.C13 (II,JJ) . EQ. 2) GO TO
578
579
               IF (C10 (II, JJ) . EQ. 2. AND. C12 (II, JJ) . EQ. 2. AND. C13 (II, JJ) . EQ. 3) GO TO
              *21
       C --- ASSIGN OFFSET OF GUARDBAIL TO TEMP2
580
           21 TEMP2= (C26(II,JJ)+C25(II,JJ))/2-0
               GO TO 31
581
       C
       C
       C
       C
         --- SLOPE MODIFICATION.
                                         ASSIGN F.S. TO TEMP1, OFFSET TO TEMP2
       C
       C
           22 TEMP1=C15 (II, JJ)
582
583
              TEMP2=C22(II,JJ)
       C
       C
         --- SEE COMMENT ABOUT F.S. AT SUBROUTINE START.
       C
584
           30 IF (TEMP1. LT. 4) GO TO 31
       C
       C
         --- USING THE LATERAL OFFSET AT WHICH SEVERITY OCCURS, ERANCH TO
               APPROPRIATE SET OF EQUATIONS OF LATERAL OFFSET PROBABILITIES AND
       C
               ASSIGN THE PROBABILITIES FOR EACH OF THE FIVE ENCRAOCHMENT ANGLES.
       C
       C
585
               IF (IFLAG. EQ. 2) GO TO 52
586
               TEMP2 = E41(II) + H42(II) * H43(II)
587
               GO TO 31
588
           52 TEMP2=C22 (II, JJ) +C15 (II, JJ) *C16 (II, JJ)
           31 X=TEM P2
589
590
              IF (X. GE.O. AND. X.LT. 5) GC TO 100
              IF (X. GF.5. AND. X.LT. 10) GO TO 101
591
              IF (X. GE. 10. AND. X. LT. 15) GO TO 102
592
               IF (X. GE. 15. AND. X. LT. 20) GO TO 103
593
               IF (X. GE. 20. AND. X. LT. 25) GO TO 104
594
               IF (X. GE. 25. AND. X. LT. 30) GO TO 105
595
               IF (X. GE. 30. AND. X. LT. 35) GO TO 106
596
               IF (X. GE. 35. AND. X. LT. 40) GO TO 107
597
               IF (X. GE. 40. AND. X. LT. 120) GO TO 108
598
599
               GO TO 999
600
          100 OFSET (1) = -0.0174 \times X + 1.0
               OFSET (2) = -0.0028 \times X + 1.0
601
               OFSET (3) = 1.0
602
603
               OFSET (4) = 1.0
               OFSET (5) = 1.0
604
605
               GO TO 1000
606
          101 OFSET (1) = -0.047 * X + 1.148
607
              OFSET (2) = -0.0224 * X + 1.058
               OFSET (3) = -0.016 * X + 1.08
608
               OFSET (4) = OFSET(3)
609
               OFSET (5) = -0.0084 \times X + 1.042
610
611
               GO TO 1000
          102 \text{ OFSET } (1) = -0.0242 \times X + 0.92
612
613
               OFSET (2) = -0.017 * X + 1.044
               OFSET (3) = -0.016 \times X + 1.08
614
615
               OFSET (4) = OFSET(3)
               OFSET (5) = -0.0084 \times X + 1.042
616
617
               GO TO 1000
          103 OFSET (1) = -0.0174 \times X + 0.818
618
619
               OFSET (2) = -0.0338 \times X + 1.296
```

OFSET $(3) = -0.016 \times X + 1.08$

```
621
           OFSET (4) = OFSET(3)
622
           OFSET (5) = -0.0166 \times X + 1.165
623
            GC TO 1000
624
        104 OFSET (1) =-0.0322*X+1.114
625
            OFSET (2) = -0.031 \times X + 1.24
626
            OFSET (3) = -0.06 \times X + 1.96
627
            OFSET(4) = OFSET(3)
628
            OFSET (5) = -0.0334 * X + 1.501
629
            GO TO 1000
        105 \text{ OFSET } (1) = -0.0282 \times X + 1.014
630
631
            OFSET (2) = -0.0254 * X + 1.10
632
            OFSET (3) = -0.024 * X + 1.06
633
            OFSET (4) = OFSET(3)
            OFSET (5) = -0.0582 \times X + 2.121
634
            GO TO 1000
635
        106 OFSET (1) = -0.0094 \times X + 0.45
636
637
            OFSET (2) = -0.0084 \times X + 0.59
            OFSET (3) = -0.016 * X + 0.82
638
639
           OFSET (4) = OFSET(3)
640
            OFSET (5) = -0.0084 \times X + 0.627
641
            GO TO 1000
642
        107 \text{ OFSET } (1) = -0.0054 * X + 0.31
            OFSET (2) = -0.0056 * X + 0.492
643
644
            OFSET (3) = -0.004 * X + 0.40
            OFSET (4) = OFSET(3)
645
            OFSET (5) = 0.3333
646
647
            GO TO 1600
648
        108 OFSET (1) = -0.00118 \times X + 0.141
            OFSET (2) = -0.00335 * X + 0.402
649
650
           OFSET (3) = -0.003 * X + 0.36
           OFSET (4) = OFSET(3)
651
           OFSET (5) =- 0. 004 16 *X+0. 4995
652
653
           GC TO 100C
654
       999
           CCNTINUE
           IF (IFLAG . EQ. 1) GO TO 60
655
656
           ERROR1(II,JJ) = 5
657
            GO TO 1000
658
       60
           CONTINUE
659
            ERRCR1(II,1) = 5
       1000 CONTINUE
660
      C
       9998 RETURN
661
662
            END
      C
663
            SUEROUTINE HINDEX
      C
            THIS SUFROUTINE CALCULATES THE HAZARD INDEX.
                                                         IMPACTS ON THE END OF
      C
            GUARDRAIL AND THE BOTTCMING OUT OF GUARDRAIL ON BRIDGE PIERS HAS
      C
            NOT BEEN TAKEN INTO ACCOUNT.
      C
      C
      C
      C
      C
```

```
120
```

```
(
      C
664
             DIMENSION HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
                        ERROR1(3,4),CS(5,5),IZERO(4)
             DIMENSION TTAC(4), CF(4), BC(4), ICE(4), ITAC(4), NOTCE(4)
665
666
             DIMENSICN COST1 (4), NDES (100), NHWY (100), NSPD (100), NADT (100)
667
             DIMENSION OFSET (5)
             DIMENSICN SIGR (5,5)
668
669
             DIMENSION FI(5,5)
                         HO(3), H1(3), H2(3), H3(3), H4(3), H5(3), H6(3),
670
             DIMENSION
                                  H8(3), H9(3), H10(3), H11(3), H12(3),
                         H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                         H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                         H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                         H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                         H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                         H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                         H63(3)
671
                                     C2(3,4), C3(3,4), C4(3,4),
             DIMENSICN
                          C1(3,4),
                                                                     C5 (3,4),
                         C6 (3,4), C7 (3,4), C8 (3,4), C9 (3,4), C10 (3,4), C12 (3,4),
                         C13(3,4), C14(3,4), C15(3,4), C16(3,4), C17(3,4),
                         C18(3,4), C19(3,4), C20(3,4), C21(3,4), C25(3,4),
                         C26(3,4), C27(3,4), C28(3,4), C29(3,4), C30(3,4),
                         C31(3,4), C32(3,4), C33(3,4), C40(3,4), C41(3,4),
                         C42(3,4), C45(3,4), C46(3,4), C22(3,4), C60(3,4),
                         C61(3,4), C62(3,4), C63(3,4)
      C
672
             DIMENSICN IMP (5,5)
673
             DIMENSION SPEED (5), ANGLE (5), SISL (5,5)
                         TAC(5,5), SI(5,5)
674
             DIMENSION
675
             INTEGES ERBOR1
             INTEGER TEMP1, TEMP2, X
676
                       HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
677
             INTEGER
                       H16, H17, H22, H23, H24, H25, H26, H27, H30, H31, H32, H33, H34,
                       H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                       H51, H52, H60, H61, H62, H63
      C
678
                       C1,C2,C3,C5,C6,C7,C8,C10,C12,C13,C14,C15,C16,C17,C18,
             INTEGER
                       C19,C20,C21,C22,C25,C26,C27,C28,C29,C30,C31,C32,C33,
                       C40,C41,C42,C60,C61,C62,C63,C9
      C
679
             INTEGER SPEED, VEL
             COMMON / MAIN5 / HIB, HI, CMB, CM, ACB, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
680
                                ACA, RMA, TACIMP, IZERO, LIFE, INT
681
             COMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
682
             CCMMON/ CST1/COST1
             CCMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
683
      C
      C
684
             CCMMON/ ENFRE / ENFR
      C
685
             CCMMON/ IDENT /I, J, II, JJ, ICARD, IFLAG, IMPR, NTITLE
      C
686
             C(MMON/ LATOF /OFSET
      C
      C
      C
687
             CCMMON/ IMPROB /IMP
      C
688
             CCMMON/ GRSI /SIGR
```

```
C
689
            CCMMON/ HURT /PI,SI
      C
690
            CCMMON/ SLOPE1 /SISL
691
            CCMMON/ DATA1 /HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13,
                             H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                             H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                             H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
      C
      C
      C
692
            CCMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
                        C22,C16,C17,C18,C19,C20,C21,C25,C26,C27,C28,C29,C30,
                             C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
      C
693
            CCMMON/ GRCRC / CS
694
            COMMON/ ERROR / ERROR 1
695
            REAL IMP
696
      9999
            CONTINUE
697
            SUM=0.0
698
            ASUM = 0.0
      C
      C
            IFLAG CHECKS TO SEE IF THE DATA IS FROM A HAZARD OR AN IMPROVEMENT
      C
            ALTERNATIVE.
                           IFLAG = 1--HAZARD.
                                                 IPLAG = 2--IMPROVEMENT ALTERNATIV
699
            IF (IFLAG. EQ. 1) GO TO 17
700
            ALCNG 1= (ABS(C46(II,JJ)-C45(II,JJ)))*5280.0
701
            GO TO 21
702
         17 ALCNG 1= (ABS (H19 (II) - H18 (II) )) *5280.0
703
         21 DO 6 K = 1.5
704
            GO TO (1,2,3,4,7), K
            TEMP = 0.48*OFSET(1)
705
       1
706
            GO TO 10
707
       2
            TEMP = 0.20*OFSET(2)
708
            GO TO 10
       3
709
            TEMP = 0.12*OFSET(3)
710
            GO TO 10
711
       4
            TEMP = 0.08*OFSET(4)
712
            GO TO 10
       7
            TEMP = 0.12*OFSET(5)
713
714
       10
            DO 5 KK = 1.5
715
            SUM = PI(KK,K) * IMP(KK,K) * ALCNG1 + SUM
716
          5 CONTINUE
717
            ASUM = TEME*SUM + ASUM
718
          6 CCNTINUE
719
            IF (IFLAG .EQ. 2) GO TO 20
720
            HI(II) = (ASUM*ENFR*0.50)/5280.0
721
            GO TO 1000
722
       20
            CHI(II,JJ) = (ASUM*ENFR*0.50)/5280.0
      C --- THE DIRECTIONAL SPLIT IS ASSUMED TO BE 0.5 IN EACH CASE
723
       1000 CONTINUE
724
       9998 RETURN
725
            END
      C
726
            SUEROUTINE PROB2
      CXA
      C
      C
            THIS SUBROUTINE ASSIGNS IMPACT PROBABILITIES TO THE ARRAY 'IMP'
```

```
BASED ON HIGHWAY DESIGN NUMBER HO GENERATED IN SUBROUTINE DATA.
      C
      C
                DRO 1----- STATEMENT 100
      C
                DM 10 AND DM 20----- URBAN INTERSTATE, STATEMENT 200
      C
                DRO2, DM30, DM40--- MULTILANE, STATEMENT 300
      C
                DRO4-DRO7-----BURAL 2 LANE, STATEMENT 400
      C
      C********************************
      C
      C
727
             DIMENSION HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
                       ERROR1 (3,4), CS (5,5), IZERC (4)
728
             DIMENSION TTAC(4), CE(4), BC(4), ICE(4), ITAC(4), NOTCE(4)
729
             DIMENSICN COST1 (4), NDES (100), NHWY (100), NSPE (100), NADT (100)
730
             DIMENSION OFSET (5)
731
             DIMENSION SIGR (5,5)
732
             DIMENSION PI(5,5)
733
                       HO (3), H1 (3), H2 (3), H3 (3), H4 (3), H5 (3), H6 (3),
             DIMENSION
                        H7(3), H8(3), H9(3), H10(3), H11(3), H12(3), H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                        H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                        H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                        H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                        H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                        H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                        H63(3)
734
                         C1(3,4),
                                    C2(3,4),
                                               C3(3,4), C4(3,4), C5(3,4),
             DIMENSION
                        C6 (3,4),C7 (3,4),C8 (3,4),C9 (3,4),C10 (3,4),C12 (3,4),
                        C13(3,4), C14(3,4), C15(3,4), C16(3,4), C17(3,4),
                        C18(3,4), C19(3,4), C20(3,4), C21(3,4), C25(3,4),
                        C26(3,4), C27(3,4), C28(3,4), C29(3,4), C30(3,4),
                        C31(3,4), C32(3,4), C33(3,4), C40(3,4), C41(3,4),
                        C42(3,4), C45(3,4), C46(3,4), C22(3,4), C60(3,4),
                        C61(3,4), C62(3,4), C63(3,4)
      C
             DIMENSION IMP (5,5)
735
             DIMENSION SPEED (5), ANGLE (5), SISL (5,5)
736
737
             DIMENSION
                        TAC(5,5), SI(5,5)
738
             INTEGER ERROR1
             INTEGER TEMP1, TEMP2, X
739
                      HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
740
             INTEGER
                      H16, H17, H22, H23, H24, H25, H26, H27, H30, H31, H32, H33, H34,
                      H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                      H51, H52, H60, H61, H62, H63
      C
741
                      C1,C2,C3,C5,C6,C7,C8,C10,C12,C13,C14,C15,C16,C17,C18,
             INTEGER
                      C19,C20,C21,C22,C25,C26,C27,C28,C29,C30,C31,C32,C33,
                      C40, C41, C42, C60, C61, C62, C63, C9
      C
742
             INTEGER SPEED, VEL
743
             CCMMON / MAIN5 / HIB, HI, CMB, CM, ACB, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
                               ACA, RMA, TACIMP, IZERO, LIFE, INT
             CCMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
744
745
             COMMON/ CST1/COST1
             COMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
746
      C
      C
747
             CCMMON/ ENFRE /ENFR
      C
748
             CCMMON/ IDENT /I,J,II,JJ,ICARD,IFLAG,IMPR,NTITLE
```

```
749
              CCMMON/ LATOF /CFSET
       C
       C
       C
750
              CCMMON/ IMPROB /IMP
       C
751
              COMMON/ GRSI /SIGR
       C
752
              CCMMON/ HURT /PI,SI
       C
753
              COMMON/ SLOPE1 /SISL
754
             COMMON/ DATA1 /H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,
                               H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                               H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                               H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
       C
       C
       C
755
             CCMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
                          C22,C16,C17,C18,C19,C20,C21,C25,C26,C27,C28,C29,C30,
                               C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
       C
756
             CCMMON/ GRCRC / CS
757
              CCMMON/ ERROR /ERROR 1
       C
       C
       C
758
             REAL IMP
       C
759
       9999
             CCNTINUE
760
             IF (IFLAG .EQ. 1) GG TO 10
761
             HO(II) = C1(II,JJ)
       C
       C
       C
       C
       C
       C
      C
             IF STATEMENT CHECKS IF HIGHWAY DESIGN NO. IS DROI
762
        10
             IF (HO (II) . FQ. 101) GO TO 100
      C
      C
             IF STATEMENT CHECKS IF HIGHWAY DESIGN NO. IS DM10 OR DM20
763
             IF (HO (II) - EQ. 210 - OR - HO (II) - EQ. 220) GO TO 200
      C
      C
             IF STATEMENT CHECKS IF HIGHWAY DESIGN NO. IS DRO2, DM30, OR DM40
764
             IF (HO (II) . EQ. 102. OR. HO (II) . EQ. 230. OR. HO (II) . EQ. 240) GO TO 300
      C
      C
             IF STATEMENT CHECKS IF HIGHWAY DESIGN NO. IS DRO3-DRO7
765
             IF (HO (II) .GE. 103. AND. HO (II) .LE. 107) GO TO 400
      C
766
             IF (IFLAG .EQ. 1) GO TO 20
767
             EREOR 1(II,JJ) = 15
768
             GO TO 1001
769
        20
             CONTINUE
770
             ERRGR1(II,1) = 15
771
             GO TO 1001
772
         100 CONTINUE
773
             IMP(1,1) = 0.001
774
             IMP(1,2) = 0.000
775
```

IMF(1,3) = 0.000

```
776
             IMP(1,4) = 0.000
777
             IMP(1,5) = 0.000
778
             IMF(2,1) = 0.090
779
             IMP(2,2) = 0.038
             IMP(2,3) = 0.022
780
781
             IMP(2,4) = 0.015
782
             IMF(2,5) = 0.022
783
             IMP(3,1) = 0.335
             IMF(3,2) = 0.139
784
785
             IMF(3,3) = 0.084
             IMP(3,4) = 0.056
786
787
             IMP(3,5) = 0.084
788
             IMP(4,1) = 0.054
789
             IMP(4,2) = 0.023
             IMP(4,3) = 0.014
790
791
             IMP(4,4) = 0.009
             IMP(4,5) = 0.014
792
793
             IMP(5,1) = 0.000
             IMP(5,2) = 0.000
794
             IMF(5,3) = 0.000
795
796
             IMP(5,4) = 0.000
             IMP(5,5) = 0.000
797
798
             GO TO 1000
799
        200 CONTINUE
             IMP(1,1) = 0.010
800
             IMP(1,2) = 0.004
801
             IMP(1,3) = 0.003
802
803
             IMP(1,4) = 0.002
804
             IMP(1,5) = 0.003
805
             IMP(2,1) = 0.210
             IMP(2,2) = 0.088
806
807
             IMP(2,3) = 0.053
             IMP(2,4) = 0.035
808
             IMP(2,5) = 0.053
809
             IMP(3,1) = 0.243
810
811
             IMP(3,2) = 0.101
812
             IMP(3,3) = 0.061
             IMP(3,4) = 0.040
813
             IMP(3,5) = 0.060
814
             IMF(4,1) = 0.016
815
816
             IMP(4,2) = 0.007
817
             IMP(4,3) = 0.004
             IMP(4,4) = 0.003
818
             IMP(4,5) = 0.004
819
820
             IMP(5,1) = 0.000
             IMF(5,2) = 0.000
821
822
             IMP(5,3) = 0.000
823
             IMP(5,4) = 0.000
824
             IMP(5,5) = 0.000
825
             GO TO 1000
826
        300 CCNTINUE
             IMP(1,1) = 0.016
827
828
             IMP(1,2) = 0.007
829
             IMP(1,3) = 0.004
830
             IMF(1,4) = 0.003
831
             IMP(1,5) = 0.004
             IMF(2,1) = 0.271
832
833
             IMP (2,2)
                      = 0.113
             IMP(2,3) = 0.068
834
             IMP(2,4) = 0.045
835
836
             IMF(2,5) = 0.068
```

```
837
           IMF(3,1) = 0.188
838
           IMP(3,2) = 0.078
839
           IMF(3,3) = 0.047
840
           IMF(3,4) = 0.031
841
           IMP(3,5) = 0.047
842
           IMF(4,1) = 0.005
843
           IMP(4,2) = 0.002
844
           IMP(4,3)
                   = 0.001
845
           IMF (4,4)
                   = 0.001
           IMP(4,5) = 0.001
846
847
           IMP(5,1) = 0.000
848
           IMF(5,2) = 0.000
849
           IMP(5,3) = 0.000
           IMP(5,4) = 0.000
850
851
           IMP(5,5) = 0.000
852
           GO TO 1000
853
       400 CCNTINUE
854
           IMP(1,1) = 0.006
855
           IMP(1,2) = 0.002
856
           IMP(1,3) = 0.001
857
           IMP(1,4) = 0.001
           IMP(1,5) = 0.002
858
859
           IMP (2, 1)
                   = 0.217
           IMF (2,2)
                   = 0.090
860
861
           IMP (2,3)
                   = 0.054
           IMP(2.4) = 0.036
862
863
           IMP(2,5) = 0.055
           IMP(3,1) = 0.249
864
865
           IMP(3,2) = 0.104
866
           IMP(3,3) = 0.062
867
           IMP(3,4) = 0.041
           IMP(3,5) = 0.062
868
869
           IMF(4,1) = 0.009
870
           IMP(4,2) = 0.004
           IMP(4,3) = 0.002
871
872
           IMP(4,4) = 0.001
           IMP(4,5) = 0.002
873
874
           IMP(5,1) = 0.000
875
           IMF(5,2) = 0.000
876
           IMP(5,3) = 0.000
877
           IMP(5,4) = 0.000
878
           IMP(5,5) = 0.000
879
      1000 CCNTINUE
     C
     C
     (
880
      1001 CCNTINUE
881
      9998 RETURN
882
     C
883
           SUBROUTINE WBEAM
     C
     (
           THIS SUEROUTINE ASSIGNS SEVERITY INDEX VALUES TO AN ARRAY SIGR.
     C
           THESE VALUES ARE COMPUTED FOR 40, 50, 60, 70, AND 80 MPH FOR
     C
     C
           ENCROACHMENT ANGLES OF 7.5, 10, 15, 20, AND 25 DEGREES.
     C
           EQUATIONS WERE OBTAINED FROM BARRIER7 RUNS.
```

```
C
      C
884
             DIMENSION HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
                        ERRCR1(3,4),CS(5,5),IZERO(4)
             DIMENSICN TTAC(4), CE(4), BC(4), ICE(4), ITAC(4), NOTCE(4)
885
             DIMENSION COST1 (4), NDES (100), NHWY (100), NSPD (100), NADT (100)
886
887
             DIMENSICH OFSET (5)
888
             DIMENSION SIGR (5,5)
             DIMENSION PI(5,5)
889
                         HO(3), H1(3), H2(3), H3(3), H4(3), H5(3), H6(3),
890
             DIMENSICN
                                  H8(3), H9(3), H10(3), H11(3), H12(3),
                         H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                         H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                         H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                         H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                         H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                         H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                         H63 (3)
891
             DIMENSION
                          C1(3,4),
                                     C2(3,4), C3(3,4), C4(3,4),
                                                                     C5(3,4),
                         C6 (3,4), C7 (3,4), C8 (3,4), C9 (3,4), C10 (3,4), C12 (3,4),
                         C13(3,4), C14(3,4), C15(3,4), C16(3,4), C17(3,4),
                         C18(3,4), C19(3,4), C20(3,4), C21(3,4), C25(3,4),
                         C26(3,4), C27(3,4), C28(3,4), C29(3,4), C30(3,4),
                         C31(3,4), C32(3,4), C33(3,4), C40(3,4), C41(3,4),
                         C42(3,4), C45(3,4), C46(3,4), C22(3,4), C60(3,4),
                         C61(3,4), C62(3,4), C63(3,4)
      C
892
             DIMENSION IMP (5,5)
893
             DIMENSION SPEED (5), ANGLE (5), SISL (5,5)
894
                         TAC(5,5), SI(5,5)
             DIMENSION
895
             INTEGER ERROR1
896
             INTEGER TEMP1, TEMP2, X
                       HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
897
             INTEGER
                       H16, H17, H22, H23, H24, H25, H26, H27, H30, H31, H32, H33, H34,
                       H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                       H51, H52, H60, H61, H62, H63
      C
                       C1,C2,C3,C5,C6,C7,C8,C10,C12,C13,C14,C15,C16,C17,C18,
898
             INTEGER
                       C19,C20,C21,C22,C25,C26,C27,C28,C29,C30,C31,C32,C33,
                       C40, C41, C42, C60, C61, C62, C63, C9
      C
899
             INTEGER SPEED, VEL
             CCMMON / MAIN5 / HIB, HI, CMB, CM, ACE, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
900
                               ACA, RMA, TACIMP, IZERO, LIFE, INT
901
             COMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
902
             CCMMON/ CST1/COST1
             CCMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
903
      C
      C
904
             CCMMON/ ENFRE /ENFR
      C
905
             CCMMON/ IDENT /I,J,II,JJ,ICARD,IFLAG,IMPR,NTITLE
      C
906
             CCMMON/ LATOF /OFSET
      C
      C
      C
907
             CCMMON/ IMPROB /IMP
```

```
C
908
             COMMON, GBSI /SIGR
      C
909
             COMMON/ HURT /PI,SI
      C
910
             CCMMON/ SLOPE1 /SISL
             CCMMON/ DATA1 /HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13,
911
                              H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                              H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                              H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
      C
      C
      C
             COMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
912
                         C22, C16, C17, C18, C19, C20, C21, C25, C26, C27, C28, C29, C30,
                              C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
      C
913
             CCMMON/ GRCRC / CS
             COMMON/ ERROR /ERROR1
914
915
             REAL IMP
       9999
916
             CCNTINUE
917
             SPEED(1) = 40.0
918
             SPEED(2) = 50.0
919
             SPFED(3) = 60.0
             SPEED(4) = 70.0
920
             SPEED(5) = 80.0
921
      C
922
             DO 1 K = 1.5
923
             TEMP = SPEED(K)
             SIGR(K, 1) = 0.01475*TEMP-0.2660
924
925
             SIGR(K, 2) = 0.01228*TEEP-0.0470
             SIGR(K,3) = 0.01222*TEMP+0.2470
926
927
             SIGR(K,4) = 0.01448*TEMP+0.1678
             SIGR(K,5) = 0.01727*TEMP+0.1827
928
      C
      C
             GUARDRAIL COLLISION REPAIR COSTS ($/FT)
      C
929
             GRCR = 7.60
      C
930
             X1 = SIGR(K, 1)
931
             X2 = SIGR(K, 2)
932
             X3 = SIGR(K,3)
933
             X4 = SIGR(K,4)
934
             X5 = SIGR(K,5)
             CS(K, 1) = ((18.87*X1)*(1.0-1.313*X1+1.373*X1*X1))*GRCR
935
             CS(K_{*}2) = ((18.87*X2)*(1.0-1.313*X2+1.373*X2*X2))*GRCR
936
             CS(K, 3) = ((18.87*X3)*(1.0-1.313*X3+1.373*X3*X3))*GRCR
937
938
             CS(K, 4) = ((18.87*X4)*(1.0-1.313*X4+1.373*X4*X4))*GRCR
939
             CS(K, 5) = ((18.87*X5)*(1.0-1.313*X5+1.373*X5*X5))*GRCR
      C
      C
             ADJUSTMENT FACTOR FOR GUARDRAIL WITH 12'-6" POST SPACINGS.
             IF (IFIAG .EC. 1 .AND. H33(II) .EQ. 12) GO TO 10
940
941
             IF (IFLAG .EQ. 1) GO TO 11
             IF (IFLAG .EQ. 2 .AND. C28 (II, JJ) .EQ. 12) GO TO 10
942
943
             GO TO 11
        10
             SIGR(K,1) = 0.89*SIGR(K,1)
944
             SIGR(K,2) = 0.91*SIGR(K,2)
945
             SIGR(K,3) = 0.93*SIGR(K,3)
946
947
             SIGR(K,4) = 1.06*SIGR(K,4)
948
             SIGR(K,5) = 1.06*SIGR(K,5)
```

CS(K, 1) = 1.20*CS(K, 1)

```
950
            CS(K, 2) = 1.20*CS(K, 2)
951
            CS(K,3) = 1.20*CS(K,3)
952
            CS(K, 4) = 1.20*CS(K, 4)
            CS(K, 5) = 1.20*CS(K, 5)
953
954
       11
            CONTINUE
955
       1
            CONTINUE
      C
956
      9998
            RETURN
957
            END
                            ********************
958
            SUEROUTINE PROB3
      C
      C --- THIS SUBROUTINE CALCULATES THE PROBABILITY OF INJURY GIVEN A
      C --- SEVERITY INDEX (SI) AREAY FROM EITHER THE WEEAM 1 OR WHEAM 2 OR SLOPE
                         THE CALCULATED VALUES ARE STORED IN ARRAY 'PI'.
      C --- SUBROUTINE.
959
            DIMENSIGN HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
                      ERROR1(3,4),CS(5,5),IZERO(4)
960
            DIMENSION TTAC(4), CE(4), BC(4), ICE(4), ITAC(4), NOTCE(4)
961
            DIMENSICN COST1 (4), NDES (100), NHWY (100), NSPD (100), NADT (100)
962
            DIMENSICN OFSET (5)
963
            DIMENSION SIGR (5,5)
964
            DIMENSION PI(5,5)
965
            DIMENSION
                       HO(3), H1(3), H2(3), H3(3), H4(3), H5(3), H6(3),
                                H8(3), H9(3), H10(3), H11(3), H12(3),
                       H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                       H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                       H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                       H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                       H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                       H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                       H63(3)
966
                        C1(3,4),
                                  C2(3,4), C3(3,4), C4(3,4), C5(3,4),
            DIMENSION
                       C6 (3,4), C7 (3,4), C8 (3,4), C9 (3,4), C10 (3,4), C12 (3,4),
                       C13(3,4), C14(3,4), C15(3,4), C16(3,4), C17(3,4),
                       C18(3,4), C19(3,4), C20(3,4), C21(3,4), C25(3,4),
                       C26(3,4), C27(3,4), C28(3,4), C29(3,4), C30(3,4),
                       C31(3,4), C32(3,4), C33(3,4), C40(3,4), C41(3,4),
                       C42(3,4), C45(3,4), C46(3,4), C22(3,4), C60(3,4),
                       C61(3,4), C62(3,4), C63(3,4)
      C
967
            DIMENSION IMP (5,5)
968
            DIMENSICN SPEED (5), ANGLE (5), SISL (5,5)
969
            DIMENSION
                       TAC(5,5), SI(5,5)
970
            INTEGER ERROR1
971
            INTEGER TEMP1, TEMP2, X
972
                     HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
            INTEGER
                     H16, H17, H22, H23, H24, H25, H26, H27, H30, H31, H32, H33, H34,
                     H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                     H51, H52, H60, H61, H62, H63
      C
973
            INTEGER
                     C1,C2,C3,C5,C6,C7,C8,C10,C12,C13,C14,C15,C16,C17,C18,
                     C19,C20,C21,C22,C25,C26,C27,C28,C29,C30,C31,C32,C33,
                     C40,C41,C42,C60,C61,C62,C63,C9
```

```
C
 974
              INTEGER SPEED, VEL
 975
              COMMON / MAIN5 / HIB, HI, CMB, CM, ACB, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
                                 ACA, RMA, TACIMP, IZERO, LIFE, INT
 976
              CCMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
              CCMMON/ CST1/COST1
 977
 978
              COMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
       C
       C
 979
              COMMON/ ENFRE /ENFR
       C
 980
              COMMON/ IDENT /I,J,II,JJ,ICARD,IFLAG,IMPR,NTITLE
       C
 981
              CCMMON/ LATOR /OFSET
       C
       C
       C
 982
              CCMMON/ IMPROB /IMP
       C
 983
              COMMON/ GRSI /SIGR
       C
 984
              CCMMON/ HUFT /PI,SI
       C
 985
              CCMMON/ SLOPE1 /SISL
 986
              CCMMON/ DATA1 /H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,
                               H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                               H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                               H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
       C
       C
       C
              CCMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
 987
                          C22,C16,C17,C18,C19,C20,C21,C25,C26,C27,C28,C29,C30,
                               C31,C32,C33,C40,C41,C42,C45,C46,C60,C61,C62,C63
       C
 988
              CCMMON/ GRCRC / CS
              CCMMON/ ERROR / ERROR 1
 989
 990
              REAL IMP
 991
       9999
              CCNTINUE
992
              IF (IFLAG . EQ. 2) GO TO 11
       C
       C
       C
       C
         --- H22 CHECKS TO SEE IF THE HAZARD IS LONGITUDINAL OR SLOPE
       C
993
              IF (H22(II).EQ.3) GO TO 13
       C
         --- LCNGITUDINAL HAZARD
              DO 10 L = 1,5
994
995
              DO 14 M = 1.5
996
              SI(L, M) = SIGR(L, M)
997
           14 CONTINUE
998
           10 CCNTINUE
999
              GO TO 800
       C
         --- SLOPE HAZARD
1000
           13 DO 12 L = 1.5
1001
              DO 15 M = 1,5
1002
              SI(L,M) = SISL(L,M)
1003
           15 CCNTINUE
1004
           12 CCNTINUE
```

```
130
```

```
1005
              GO TO 800
1006
           11 IF (C10 (II, JJ) = EQ= 2. AND C12 (II, JJ) = EQ= 2. AND C13 (II, JJ) = EQ= 2) GO TO
1007
             IF (C10 (II, JJ) . EQ. 2. AND. C12 (II, JJ) . EQ. 2. AND. C13 (II, JJ) . EQ. 3) GO TO
             *20
1008
              IF (C10 (II, JJ) . EQ. 3. AND. C12 (II, JJ) . EQ. 1) GO TO 20
1009
              IF (C10 (II, JJ) . EQ. 3. AND. C12 (II, JJ) . EQ. 2) GO TO 30
       C
       C
       C
       C
       C
         --- LCNGITUCINAL IMPROVEMENT
1010
          20 DO 40 II = 1.5
1011
             DO 41 MM = 1.5
1012
              SI(IL,MM) = SIGR(IL,MM)
1013
          41 CCNTINUE
1014
          40 CONTINUE
1015
             GO TO E00
       C
       C --- SLOPE IMPROVEMENT
1016
          30 DO 42 II = 1,5
1017
             DO 43 MM = 1,5
1018
             SI(IL,MM) = SISL(IL,MM)
1019
          43 CONTINUE
1020
          42 CONTINUE
1021
         800 DO 2 K = 1,5
1022
             DO 2 L = 1.5
1023
             IF (SI (K,L).GE.2.5) GO TO 1
1024
             IF (SI (K,L).LT.0.2) GO TO 3
1025
             PI(K,L) = 0.4*SI(K,L)
1026
             GO TO 5
1027
           3 CONTINUE
1028
             PI(K, L) = 0.08
1029
             GC TO 5
1030
           1 CCNTINUE
1031
             PI(K, I) = 1.00
1032
           5 CONTINUE
1033
           2 CCNTINUE
       C
       C
       C
       C
       C
1034
        9998 RETURN
1035
             END
       C
       C
       C
       C
       C
       C
       C
       C
       (
```

```
C
1036
             SUEROUTINE DATA
       C
       C
             THIS SUBROUTINE READS AND STORES HAZARD AND IMPROVEMENT DATA OBTAINE
       C
             IN THE FIELD.
                            THE MAXIMUM NUMBER OF HAZARDS IS 3.
                                                                 MAXIMUM NUMBER
       C
             OF IMPROVEMENT ALTERNATIVES IS 4.
       C
       C
1037
             DIMENSION HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
                       ERROR1(3,4), CS(5,5), IZERO(4)
             DIMENSION TTAC(4), CE(4), BC(4), ICE(4), ITAC(4), NOTCE(4)
1038
             DIMENSION COST1 (4), NDES (100), NHWY (100), NSPD (100), NADT (100)
1039
1040
             DIMENSICN OFSET (5)
             DIMENSICN SIGR (5,5)
1041
1042
             DIMENSION PI(5,5)
1043
             DIMENSION
                        HO(3), H1(3), H2(3), H3(3), H4(3), H5(3), H6(3),
                                 H8 (3), H9 (3), H10 (3), H11 (3), H12 (3),
                        H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                        H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                        H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                        H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                        H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                        H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                        H63(3)
1044
                                   C2(3,4), C3(3,4), C4(3,4),
            DIMENSION
                         C1(3,4),
                                                                 C5 (3,4),
                        C6 (3,4), C7 (3,4), C8 (3,4), C9 (3,4), C10 (3,4), C12 (3,4),
                        C13(3,4), C14(3,4), C15(3,4), C16(3,4), C17(3,4),
                        C18(3,4), C19(3,4), C20(3,4), C21(3,4), C25(3,4),
                        C26(3,4), C27(3,4), C28(3,4), C29(3,4), C30(3,4),
                        C31(3,4), C32(3,4), C33(3,4), C40(3,4), C41(3,4),
                        C42(3,4), C45(3,4), C46(3,4), C22(3,4), C60(3,4),
                        C61(3,4), C62(3,4), C63(3,4)
             DIMENSION IMP (5,5)
1045
1046
             DIMENSICN X (78)
1047
             DIMENSION SPEED (5), ANGLE (5), SISL (5,5)
1048
                        TAC(5,5), SI(5,5)
             DIMENSION
1049
             INTEGER ERBOR1
1050
             INTEGER TEMP1, TEMP2
                      HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
1051
            INTEGER
                      H16, H17, H22, H23, H24, H25, H26, H27, H30, H31, H32, H33, H34,
                      H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                      H51, H52, H60, H61, H62, H63
      C
1052
            INTEGER
                      C1,C2,C3,C5,C6,C7,C8,C10,C12,C13,C14,C15,C16,C17,C18,
                      C19,C20,C21,C22,C25,C26,C27,C28,C29,C30,C31,C32,C33,
                      C40,C41,C42,C60,C61,C62,C63,C9
      C
             INTEGER SPEED, VEL
1053
1054
             CCMMON / MAIN5 / HIB, HI, CMB, CM, ACB, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
                              ACA, RMA, TACIMP, IZERO, LIFE, INT
1055
             CCMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
1056
             CCMMON/ CST1/COST1
1057
             CCMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
```

```
132
```

```
C
1058
               COMMON/ ENFRE /ENFR
        C
               CCMMON/ IDENT /I,J,II,JJ,ICARD,IFLAG,IMPR,NTITLE
1059
        C
               CCMMON/ LATOF /OFSET
1060
        C
        C
        C
1061
               CCMMON/ IMPROB /IMP
        C
1062
               COMMON/ GRSI /SIGR
        C
1063
               CCMMON/ HURT /PI,SI
        C
1064
               COMMON/ SLOPE1 /SISL
               CCMMON/ DATA1 /H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,
1065
                                 H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                                 H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                                 H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
        C
        C
        C
1066
               CCMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
                            C22,C16,C17,C18,C19,C20,C21,C25,C26,C27,C28,C29,C30,
                                 C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
        C
1067
               CCMMON/ GRCRC / CS
               CCMMON/ ERROR / ERROR 1
1068
1069
               REAL IMP
               INITIALIZE ARRAYS TO ZERO
        C
        C
        9999
1070
               CCNTINUE
1071
               DO 1 K = 1.3
        C
1072
                HO(K) =
1073
                H2 (K)
                      =
                         0
1074
                H3 (K)
                       =
                          0
1075
                       =
                         0
                H4 (K)
1076
                H5 (K)
                       =
                         0
1077
                          0
                H6 (K)
                       =
1078
                H7 (K)
                       =
                         0
                         C
1079
                H8 (K)
                       =
1080
                H9 (K)
                       =
                         0
1081
               H 10 (K)
                       =
                          0
1082
               H11(K)
                       =
                          C
1083
                       =
                          C
               H12(K)
1084
               H13(K)
                       =
                         0
                         C
                       =
1085
               H14(K)
1086
                          C
               H15 (K)
                       =
1087
                       =
                         0
               H16 (K)
1088
               H 17 (K)
                       = 0
1089
                       = 0.0
               H18 (K)
1090
               H19 (K)
                       = 0.0
1091
                       = 0
               H22(K)
                       =
                         C
1092
               H23 (K)
1093
                       =
               H24 (K)
                         0
1094
               H25 (K)
                       =
                          0
1095
               H26 (K)
                       =
                          0
1096
               H27 (K)
                       =
```

H30 (K)

```
1098
                 H31(K) =
                            0
1099
                          ×
                            0
                H32(K)
1100
                H33(K)
                          22
                            0
1101
                H34 (K)
                          =
                             0
1102
                H35 (K)
                          =
                            0
1103
                H36 (K)
                          -2
1104
                         =
                            0
                H37 (K)
1105
                H38 (K)
                          =
                            0
                          =
                            0
1106
                H41(K)
1107
                H42 (K)
                          =
                            0
                          =
                            0
1108
                H43 (K)
1109
                H44 (K)
                          =
                             0
                          =
                            0
1110
                H45 (K)
1111
                H46 (K)
                          =
                          =
                            0
1112
                H47 (K)
1113
                H48 (K)
                          =
                             0
                          =
1114
                H50 (K)
                            0
                          =
                            0
1115
                H51(K)
                          =
                            0
1116
                H52 (K)
1117
                H60 (K)
                          =
                            0
1118
                H61(K)
                          =
1119
                H62 (K)
                          =
1120
                H63(K) =
1121
              1 CONTINUE
        C
1122
                DO 2 L=1,3
1123
                DO 2 M=1,4
        C
1124
                  C1(L,M) =
1125
                  C2 (L, B)
                            =
                               0
1126
                  C3 (L, M)
                            =
                               0
                  C4 (L, M)
1127
                            =
                               0
                               0
1128
                  C5 (L, M)
                            =
1129
                               0
                  C6 (L, E)
                            =
                            =
                               0
1130
                  C7 (L.M)
1131
                  C8 (L,E)
                            =
                               0
                  C9 (L, E)
                            =
                               0
1132
1133
                C10 (L.M)
                            =
                               0
                            =
                               0
                C12 (L,M)
1134
                               0
1135
                C13 (L, M)
                            =
                C14 (L, M)
1136
                            =
                               0
1137
                C15 (L, M)
                            =
                               0
1138
                C16 (L.E)
                            =
                               0
1139
                C17 (L, M)
                            =
1140
                C18 (L, E)
                            =
                               0
                               0
1141
                C19 (L, M)
                            =
                C20 (L, M)
                            =
                               0
1142
1143
                C21(L,M)
                            =
                               0
1144
                            =
                               0
                C22 (L, M)
                               0
1145
                C25 (L, M)
                            =
                               0
1146
                C26 (L,M)
                            =
                               0
1147
                C27 (L.E)
                            =
1148
                C28 (L. !)
                            =
                               0
1149
                C29 (L, M)
                            =
                               0
                               0
                C30 (L, M)
1150
                            =
                               0
1151
                 C31(L, M)
                            =
1152
                 C32 (L, M)
                            =
                               0
                               0
1153
                 C33 (L, M)
                            =
1154
                 C40 (L, M)
                            =
                               0
1155
                 C41(L,M)
                            =
                               0
1156
                 C42 (L, M)
                            =
```

```
1157
               C45(L.R) = 0.0
1158
               C46(L,M) = 0.0
1159
               C60 (L,M)
                          =
                             0
1160
               C61(L,E) = 0
1161
               C62(L,M) = 0
1162
               C63(L,M) = 0
1163
             2 CONTINUE
        C
        C
        C
               READ VALUES FROM DATA CARDS AND INSERT IN PROPER ARRAY POSITION.
        C
               IGR KEFFS TRACK OF INDIVIDUAL GROUPS. ICARD IS USED TO LABEL THE
               CARD AS HAZARD OR IMPROVEMENT ALTERNATIVE.
        C
        C
        C
1164
               IMPR= 0
1165
               J=0
               I = 0
1166
1167
           100 CCNTINUE
               READ(5, 1000) (X(L), L=1,78), IGR, ICARD
1168
1169
               GO TO (200,205), ICARD
1170
           200 CGNTINUE
                 I = I + 1
1171
1172
                 H60(I) = X(1) + 0.1
1173
                 H61(I) = 10.0 \times X(2) + X(3) + 0.1
1174
                 H62(I) = X(4) + 0.1
                 H63(I) = 100.0 \times X(5) + 10.0 \times X(6) + X(7) + 0.1
1175
                 HO(I) = 100.0*X(1) + 10.0*X(2) + X(3) + 0.1
1176
1177
                 H2(I) = 10.*X(8) + X(9) + 0.1
                 H3(I) = 10000.0*X(10) + 1000.0*X(11) + 100.*X(12) + 10.*X(13) + X(14) + 0.1
1178
                 H4(I) = 10.*X(15) + X(16) + 0.1
1179
1180
                 H5(I) = 10.*X(17) + X(18) + 0.1
1181
                 H6(I) = 10.*X(19) + X(20) + 0.1
                 H7(I) = 10.*X(21) + X(22) + 0.1
1182
1183
                 H8(I) = X(23) + 0.1
1184
                 H9(I) = X(24) + 0.1
               H10(I) = X(25) + 0.1
1185
1186
               H11(I) = X(26) + 0.1
1187
                H12(I) = X(27) + 0.1
               H13(I) = 1000.*X(28) + 100.*X(29) + 10.*X(30) + X(31) + .1
1188
               H14(I) = 10.*X(32) + X(33) + 1
1189
               H15(I) = 10 - *X(34) + X(35) + -1
1190
1191
               H16(I) = X(36) + .1
               H17(I) = 10.*X(37) + X(38) + .1
1192
               H18(I) = 100.*X(39) + 10.*X(40) + X(41) + ... 1 + X(42) + ... 01 + X(43) + ... 001 + X(44)
1193
1194
               H19(I) = 100.*X(45) + 10.*X(46) + X(47) + ... 1 + X(48) + ... 01 + X(49) + ... 001 + X(50)
               H50(I) = 10.0*X(70) + X(71) + 0.1
1195
1196
               H51(I) = 10.0*X(72) + X(73) + 0.1
1197
               H52(I) = 10.0*X(74) + X(75) + 0.1
1198
               H22(I) = X(51) + .1
1199
               IH22=H22(I)
        C
1200
               GO TO (3,4,5), IH22
        C
        C
               I DENTIFICATION
        C
        C
                            FOINT HAZARD
               IH22=1
               IH22=2
        C
                            LONGITUDINAL HAZARD
        C
               IH22=3
                            SLOPE HAZARD
        C
1201
             3 CONTINUE
1202
                H23(I) = 10.*x(52) + x(53) + 0.1
```

```
1203
                H24(I) = 10.*X(54) + X(55) + 0.1
                H25(I) = 1000.*X(56) + 100.*X(57) + 10.*X(58) + X(59) + 0.1
1204
1205
                H26(I) = 10.*X(60) + X(61) + 0.1
1206
                H27(I) = 10.*X(62) + X(63) + 0.1
1207
                J=1
1208
                GO TO 100
        C
1209
             4 CCNTINUE
                H30(I) = 10.*X(52) + X(53) + 0.1
1210
1211
                H31(I) = 10.*X(54) + X(55) + 0.1
                H32(I) = 10.*x(56) + x(57) + 0.1
1212
                H33(I) = 10.*X(58) + X(59) + 0.1
1213
1214
                H34(I) = X(60) + .1
1215
                H35(I) = X(61) + .1
1216
                H36(I) = X(62) + .1
1217
                H37(I) = X(63) + ... 1
1218
                H38(I) = X(64) + .1
1219
                J=1
1220
                GO TO 100
        C
1221
             5 CONTINUE
1222
                H41(I) = 10.*X(52) + X(53) + 0.1
1223
                H42(I) = X(54) + 0.1
                H43(I) = 10.*X(55) + X(56) + 0.1
1224
1225
                H44(I) = 10.*X(57) + X(58) + 0.1
1226
                H45(I) = X(59) + 0.1
1227
                H46(I) = 10.*X(60) + X(61) + 0.1
1228
                H47(I) = X(62) + -1
1229
                H48(I) = X(63) + .1
1230
                J=1
1231
                GO TO 100
1232
           205 CONTINUE
1233
                IMPR=IMPR+1
1234
                C60(I,J) = X(1) + 0.1
                C61(I,J) = 10.0*X(2) + X(3) + 0.1
1235
1236
                C62(I,J)=X(4)+0.1
                C63(I,J) = 100.0*x(5) + 10.0*x(6) + x(7) + 0.1
1237
                 C1(I,J) = 100 - 0 \times X(1) + 10 - 0 \times X(2) + X(3) + 0 - 1
1238
                 (2(I_J) = 1000.0*X(4) + 100.0*X(5) + 10.0*X(6) + X(7) + 0.1
1239
                 C3(I,J) = 10.0 * X(8) + X(9) + 0.1
1240
                 C9(I,J) = 10000 - 0*X(10) + 1000 - 0*X(11) + 100 - 0*X(12) + 10 - 0*X(13)
1241
               *+X(14)+0.1
                 C4(I,J) = 1000.*X(15) + 100.*X(16) + 10.*X(17) + X(18) + .1*X(19)
1242
                 C5(I_J) = 100.*X(20) + 10.*X(21) + X(22) + 0.1
1243
1244
                 C6(I_J) = 100.*X(23) + 10.*X(24) + X(25) + 0.1
1245
                 C7(I,J) = 10.*X(26) + X(27) + 0.1
                 C8(I,J) = 10.*X(28) + X(29) + 0.1
1246
1247
                C10(I_J) = X(30) + .1
1248
                C12(I,J) = X(31) + .1
        C
1249
                IC1C=C10(I,J)
1250
                IC12=C12(I,J)
1251
                GO TO (6,7,8,9),IC10
        C
        C
                IDENTIFICATION
        (
        C
                IC 10= 1
                            POINT HAZARD IMPROVEMENT
                            LONGITUDINAL HAZARD IMPROVEMENT
        C
                IC 10= 2
        C
                IC10=3
                            SLOPE HAZARD IMPROVEMENT
        C
                            NO IMPROVEMENT
                IC10=4
```

```
C
1252
            6 CONTINUE
1253
              GO TO (10,11,12), IC12
        C
        C
              IDENTIFICATION
        C
        C
              IC12=1
                          POINT HAZARD IMPROVEMENT -- ALLEVIATE HAZARD
       C
                          FOINT HAZARD IMPROVEMENT -- INSTALL TRAFFIC BARRIER
              IC12= 2
        C
              IC12=3
                          POINT HAZARD IMPROVEMENT -- INSTALL ENERGY ATTENUATOR
           10 CONTINUE
1254
1255
              C13(I,J)=X(32)+.1
1256
              IF (IGR. EQ. 1. OR. IGR. EQ. 2) GO TO 300
1257
              J=J+1
1258
              GO TO 100
       C
1259
           11 CONTINUE
1260
              C13(I,J) = 10.*X(32) + X(33) + .1
1261
              C14(I_0J) = 1000.*X(34) + 100.*X(35) + 10.*X(36) + X(37) + 0.1
1262
              GC TO 400
       C
1263
           12 CCNTINUE
1264
              C13(I,J) = 10.*X(32) + X(33) + ...1
1265
              IF (IGR. EQ. 1.OR. IGR. EC. 2) GO TO 300
1266
              J=J+1
1267
              GO TO 100
       C
1268
            7 CONTINUE
1269
              GO TO (13,14,15),IC12
        C
        C
              IDENTIFICATION
        C
       C
              IC12=1
                          LONGITUDINAL IMPROVEMENT--CURB
                          LONGITUDINAL IMPROVEMENT -- TRAFFIC BARRIER
       C
              IC12= 2
       C
                          LONGITUDINAL IMPROVEMENT -- BRIDGERAIL
              IC12=3
           13 CONTINUE
1270
1271
              C13(I,J)=X(32)+.1
1272
              IF (IGR. EQ. 1. OR. IGR. EQ. 2) GO TO 300
1273
              J=J+1
1274
              GO TO 100
       C
1275
           14 CCNTINUE
1276
              C13(I,J)=X(32)+-1
1277
              C14(I,J) = 10.*X(33) + X(34) + .1
       C
1278
              IC13=C13(I,J)
1279
              GO TO (101,500,500), IC13
       C
              I DENTIFICATION
       C
       C
                          DO NOT FILL GUT BOXES A AND B
              IC13=1
       C
              IC13=2
                          FILL OUT EOXES A AND B
              IC13=3
       C
                          FILL OUT BOXES A AND B
1280
          101 CONTINUE
              IF (IGR. EQ. 1. OR. IGR. EQ. 2) GO TO 300
1281
1282
              J=J+1
1283
              GO TO 100
       C
1284
           15 CONTINUE
```

```
1285
               C13(I,J)=X(32)+.1
               C14(I,J) = 10.*X(33) + X(34) + .1
1286
1287
               IF (IGR. EQ. 1. OR. IGR. EQ. 2) GO TO 300
1288
               J=J+1
               GO TO 100
1289
        C
             8 CCNTINUE
1290
        C
        C
               IDENTIFICATION
        C
        C
                           SLOPE IMPROVEMENTS -- INSTALL TRAFFIC BARRIER
               IC12=1
        (
               IC12=2
                           SLOPE IMPROVEMENTS -- MODIFY
        C
1291
               GO TO (16, 17), IC12
1292
            16 CONTINUE
1293
               C13(I,J)=X(32)+.1
1294
               C14(I,J) = 10.*X(33) + X(34) + .1
1295
               GO TO 600
        C
1296
            17 CONTINUE
1297
               C22(I,J) = 10.*X(32) + X(33) + 0.1
1298
               C15(I,J) = X(34) + 0.1
               C16(I_{*}J) = 10.*X(35) + X(36) + 0.1
1299
               C17(I_J) = 10.*X(37) + X(38) + 0.1
1300
1301
               C18(I_J) = X(39) + 0.1
               C19(I,J) = 10.*X(40) + X(41) + 0.1
1302
1303
               C20(I,J)=X(42)+.1
1304
               C21(I_J) = X(43) + .1
               GO TO 700
1305
        C
1306
             9 CONTINUE
               IF (IGR. EQ. 1. OR. IGR. EC. 2) GO TO 300
1307
1308
               J=J+1
1309
               GO TO 100
        C
1310
          400 CCNTINUE
        C
               THIS SECTION COMPLETES BOX A
               C25(I,J) = 10.*X(48) + X(49) + 0.1
1311
               C26(I,J) = 10.*X(50) + X(51) + 0.1
1312
               C27(I_J) = 10.*X(52) + X(53) + 0.1
1313
               C28(I,J) = 10.*X(54) + X(55) + 0.1
13 14
               C29(I,J)=X(56)+-1
1315
1316
               C30(I_J) = X(57) + .1
1317
               C31(I_*J) = X(58) + .1
               C32(I,J)=X(59)+-1
1318
1319
               C33(I,J) = X(60) + -1
               IF (IGR. EQ. 1. OR. IGR. EQ. 2) GO TO 300
1320
1321
               J=J+1
1322
               GC TO 100
        C
1323
          500 CONTINUE
               THIS SECTION COMPLETES BOXES A AND B AND C
        C
               C25(I,J) = 10.*X(48) + X(49) + 0.1
1324
1325
               C26(I,J) = 10.*X(50) + X(51) + 0.1
               C27(I,J) = 10.*X(52) + X(53) + 0.1
1326
               C28(I_J) = 10.*X(54) + X(55) + 0.1
1327
               C29(I,J) = X(56) + .1
1328
1329
               C30(I,J)=X(57)+.1
1330
               C31(I,J)=X(58)+.1
               C32(I,J) = X(59) + .1
1331
               C33(I,J) = X(60) + -1
1332
```

```
138
1333
             C40(I_J) = X(61) + -1
1334
             C41(I_J) = X(62) + .1
1335
             C42(I,J) = 10.*X(63) + X(64) + 0.1
1336
             C45(I,J) = 100.*X(65) + 10.*X(66) + X(67) + ... 1*X(68) + ... 01*X(69) + ... 001*X(70)
1337
             C46(I_J) = 100.*X(71) + 10.*X(72) + X(73) + ... 1*X(74) + ... 01*X(75) + ... 001*X(75)
1338
             IF (IGR. EQ. 1. OR. IGR. EQ. 2) GO TO 300
1339
             J=J+1
1340
             GC TO 100
       C
1341
         600 CCNTINUE
       C
             THIS SECTION COMPLETES BOXES A AND C
             C25(I,J) = 10.*X(48) + X(49) + 0.1
1342
1343
             C26(I_J) = 10.*X(50) + X(51) + 0.1
1344
             C27(I_J) = 10.*X(52) + X(53) + 0.1
1345
             C28(I.J) = 10.*X(54) + X(55) + 0.1
1346
             C29(I,J) = X(56) + 1
1347
             C30(I,J)=X(57)+.1
1348
             C31(I,J) = X(58) + .1
1349
             C32(I_J) = X(59) + .1
1350
             C33(I,J)=X(60)+.1
1351
             C45(I,J) = 100.*X(65) + 10.*X(66) + X(67) + .1*X(68) + .01*X(69) + .001*X(70)
1352
             C46(I,J) = 100.*X(71) + 10.*X(72) + X(73) + ... 1*X(74) + ... 01*X(75) + ... 001*X(76)
1353
             IF (IGR. EQ. 1. OR. IGR. EQ. 2) GO TO 300
1354
             J=J+1
1355
             GO TO 100
       C
1356
         700 CONTINUE
       C
             THIS SECTION COMPLETES BOX C
1357
             C45(I,J) = 100.*X(65) + 10.*X(66) + X(67) + .1*X(68) + .01*X(69) + .001*X(70)
1358
             C46(I_J) = 100 * X(71) + 10 * X(72) + X(73) + 1 * X(74) + 01 * X(75) + 001 * X(76)
1359
             IF (IGE. FQ. 1. OR. IGR. EQ. 2) GO TO 300
1360
             J=J+1
             GO TO 100
1361
1362
         300 CCNTINUE
1363
        1000 FORMAT (78F1.0,211)
1364
        9998 RETURN
1365
             END
       C
       C********************************
1366
             SUBROUTINE SLOPE
       C
       C
       C
             THIS SUERCUTINE DETERMINES THE SEVERITY INDEX FOR VEHICLES TRAVERSIN
       C
             VARIOUS TYPES OF DITCHES.
                                         THE VARIABLES OF THE TERRAIN ENTERED INCL
             H42-FFONTSLOPE--2,3,4,6 TO 1 ONLY.
                                                    H45--BACKSLOPE--0,2,4 TO 1 ONLY
       C
             H43--FILL HEIGHT--50 FEET OR LESS.
                                                   H44--DITCH WIDTH--FROM 0 TO 12 F
       C
       C
       C
       C
       C
1367
             DIMENSION HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
                        ERROR1(3,4), CS(5,5), IZERC(4)
1368
             DIMENSION TTAC(4), CE(4), BC(4), ICE(4), ITAC(4), NOTCE(4)
```

```
DIMENSION COST1 (4), NDES (100), NHWY (100), NSPD (100), NADT (100)
1369
1370
              DIMENSICN OFSET (5)
1371
              DIMENSION SIGR (5,5)
1372
              CIMENSICN FI(5,5)
1373
              DIMENSICN
                          HO(3), H1(3), H2(3), H3(3), H4(3), H5(3), H6(3),
                                    H8(3), H9(3), H10(3), H11(3), H12(3),
                          H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                          H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                          H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                          H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                          H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                          H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                          H63(3)
1374
              DIMENSION
                           C1(3,4),
                                      C2(3,4), C3(3,4), C4(3,4),
                                                                       C5 (3,4)
                          C6 (3,4), C7 (3,4), C8 (3,4), C9 (3,4), C10 (3,4), C12 (3,4),
                          C13(3,4), C14(3,4), C15(3,4), C16(3,4), C17(3,4),
                          C18(3,4), C19(3,4), C20(3,4), C21(3,4), C25(3,4),
                          C26(3,4), C27(3,4), C28(3,4), C29(3,4), C30(3,4),
                          C31(3,4), C32(3,4), C33(3,4), C40(3,4), C41(3,4),
                          C42(3,4), C45(3,4), C46(3,4), C22(3,4), C60(3,4),
                          C61(3,4), C62(3,4), C63(3,4)
       C
              DIMENSICN IMP (5,5)
1375
1376
              DIMENSION SPEED (5), ANGLE (5), SISL (5,5)
                          TAC(5,5), SI(5,5)
1377
              DIMENSICN
1378
              INTEGER ERBOR1
              INTEGER TEMP1, TEMP2, X
1379
                        HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
1380
              INTEGER
                        H16, H17, H22, H23, H24, H25, H26, H27, H30, H31, H32, H33, H34,
                        H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                        H51, H52, H60, H61, H62, H63
       C
                        C1,C2,C3,C5,C6,C7,C8,C10,C12,C13,C14,C15,C16,C17,C18,
1381
             INTEGER
                        C19,C20,C21,C22,C25,C26,C27,C28,C29,C30,C31,C32,C33,
                        C40, C41, C42, C60, C61, C62, C63, C9
       C
1382
              INTEGER SPEED, VEL
              CCHMON / MAIN5 / HIB, HI, CMB, CM, ACE, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
1383
                                 ACA, RMA, TACIMP, IZERO, LIFE, INT
              COMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
1384
1385
              CCMMON/ CST1/COST1
              COMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
1386
       C
       C
              CCMMON/ ENFRE /ENFR
1387
       C
              CCMMON/ IDENT /I, J, II, JJ, ICARD, IFLAG, IMPR, NTITLE
1388
       C
1389
              CCMMCN/ LATOF /OFSET
       C
       C
       C
1390
              CCEMON/ IMPROB /IMP
       C
1391
              CCMMON/ GRSI /SIGR
       C
1392
              CCMMON/ HUET /PI,SI
       C
1393
              CCMMON/ SLCPE1 /SISL
              CCMMON/ DATA1 /HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13,
1394
```

H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,

```
H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                               H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
       C
       C
       C
              CCMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
1395
                          C22,C16,C17,C18,C19,C20,C21,C25,C26,C27,C28,C29,C30,
             *
                               C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
       C
              CCMMON/ GRCRC / CS
1396
              CCMMON/ ERROR /ERROR1
1397
1398
              REAL IMP
              DATA SPEED (1) /40/, SPEED (2) /50/, SPEED (3) /60/, SPEED (4) /70/,
1399
             *SPFED (5)/8G/
       C
              DATA ANGLE(1)/7.5/, ANGLE(2)/10./, ANGLE(3)/15./, ANGLE(4)/20./,
1400
             *ANGLE (5)/25./
       C
       C
       C
       9999
1401
              CCNTINUE
              IF (IFLAG .EQ. 1) GO TO 501
1402
              IF (IFLAG .EQ. 2) GO TO 502
1403
1404
              CCNTINUE
1405
              ITEMP1 = H42(II)
         501
              ITEMP2 = H43(II)
1406
              ITEMP3 = H44(II)
1407
              ITEMP4 = H45(II)
1408
              GO TO 503
1409
        502
              ITEMP1 = C15(II,JJ)
1410
              ITEMP2 = C16(II,JJ)
1411
              ITEMP3 = C17(II,JJ)
1412
              ITEMP4 = C18(II,JJ)
1413
1414
        503
              CCNTINUE
       C
       C
       C
       c
       C
       C
              DO 1001 K=1,5
1415
1416
              DO 1002 L=1,5
       C
1417
              VEL=SPEED (K)
1418
              ANG=ANGIE (L)
       C
1419
              GO TO (1,2,3,4,1,6), ITEMP1
       C
1420
        1
              GO TO 1003
       C
       C
        2
              IF (ITEEF4 .EQ. 0) GO TO 7
1421
              IF (ITEMP4 -EQ- 4)
                                  GC TC 8
1422
                                  GC TO 9
1423
              IF (ITEMF4 -EQ. 2)
1424
              GO TO 1004
1425
        3
              IF (ITEMP4 .EQ. 0) GO TO 10
              IF (ITEMP4 .EQ. 4)
                                  GC TC 11
1426
1427
              IF (ITEMP4 .EQ. 2)
                                  GC TO 12
```

GO TO 1004

```
IF (ITEMF4 .EQ. 0) GC TC 13
1429
         4
              IF (ITEMP4 .EQ. 4) GO TC 14
1430
              IF (ITEME4 .EQ. 2)
                                   GO TC 15
1431
1432
              GO TO 1004
1433
              IF (ITERF4 .EQ. 0)
                                   GO TO
         6
              IF (ITEMP4 .EQ. 4) GO TO 17
1434
              IF (ITEMP4 -EQ. 2) GO TO 18
1435
1436
              GC TO 1004
       C
       C
       C
         7
              IF (ITEMP2 .GT. 15) GO TO 200
1437
1438
              IF (ANG _LT_ 22_5) GO TO 100
              SISI(K, L) = 0.010 *VEL+0.900
1439
              GO TO 1000
1440
              IF (ANG .LT. 17.5) GO TO 101
         100
1441
              SISI(K,L) = 0.028 * VEL - 0.400
1442
1443
              GO TO 1000
1444
         101
              IF (ANG .LT. 12.5) GO TO 102
              SISL(K,L) = 0.045 * VEL - 1.633
1445
1446
              GC TO 1000
              IF (ANG .LE. 7.5) GO TO 103
         102
1447
1448
              SISI(K,L) = 0.015 * VEL - 0.190
1449
              GO TO 1000
1450
         103
              IF (ANG .LT. 0.0) GO TO 104
1451
              SISI(K,L) = 0.000 * VEL + 0.533
              GO TO 1000
1452
1453
         104
              CCNTINUE
       C
       C
1454
         200
              IF (ITEMP2 .GT. 25) GO TO 201
1455
              IF (ANG .LT. 22.5) GO TO 105
              SISL(K,L) = 0.075 * VEL - 2.433
1456
1457
              GO TO 1000
1458
         105
              IF (ANG .LT. 17.5) GO TO 106
              SISL(K,L) = 0.0485 * VEL - 1.365
1459
              GO TO 1000
1460
1461
         106
              IF (ANG .LT. 12.5) GO TC 107
              SISI(K,L) = 0.020 * VEL - 0.200
1462
              GO TO 1600
1463
1464
         107
              IF (ANG .LE. 7.5) GO TO 108
              SISL(K,1) =0.0095*VEL+0.405
1465
1466
              GO TO 1000
              IF(ANG .LT. 0.0) GO TO 109
1467
         108
1468
              SISI(K,L) = 0.005*VEL+0.667
              GO TO 1000
1469
1470
         109
              CONTINUE
       C
              IF (ITEMP2 .GT. 40) GO TO 202
         201
1471
              IF (ANG .LT. 22.5) GO TO 110
1472
1473
              SISI(K,L) = 0.020 *VEL + 0.033
1474
              GO TO 1000
1475
         110
              IF (ANG .LT. 17.5) GO TO 111
              SISI(K,L) = 0.0095 * VEL + 0.543
1476
1477
              GO TO 1000
              IF (ANG .LT. 12.5) GO TO 112
1478
         111
1479
              SISI(K,I) = 0.000 * VEL + 1.000
1480
              GO TO 1000
              IF (ANG .LE. 7.5) GO TO 113
1481
         112
              SISL(K, L) = 0.000 *VEL + 1. 170
1482
```

```
1483
              GO TO 1000
1484
              IF(ANG .LT. 0.0) GO TO 114
         113
1485
              SISL(K, L) = 0.000 * VEL + 1.267
1486
              GO TO 1000
1487
         114
              CCNTINUE
       C
       C
1488
         202
              GO TO 1005
       C
       C
       C
         8
              IF (ITEMF2 .GT. 15) GO TO 203
1489
1490
              IF (ANG .LT. 22.5) GO TO 115
              SISI(K, L) =-0.0194*VEL+4.0456
1491
              GO TO 1000
1492
         115
              IF (ANG _LT_ 17.5) GO TO 116
1493
              SISL(K,L) = 0.0029 * VEL + 1.9126
1494
              GO TO 1000
1495
              IF (ANG .LT. 12.5) GO TO 117
1496
         116
              SISI(K,L) = 0.0243*VEL-0.1942
1497
              GO TO 1000
1498
              IF (ANG .LE. 7.5) GO TO 118
1499
         117
1500
              SISL(K,I) = 0.0165 * VEL - 0.0485
              GO TO 1000
1501
              IF (ANG .LT. 0.0) GO TO 119
1502
         118
              SISL(K,1) = 0.0097*VEI+0.0000
1503
1504
              GO TO 1000
         119
1505
              CCNTINUE
       C
       C
1506
         203
              IF (ITEMP2 .GT. 25) GO TO 204
1507
              IF (ANG .LT. 22.5) GO TO 120
              SISI(K,L) = 0.1117*VEI-3.4631
1508
1509
              GO TO 1000
1510
         120
              IF (ANG _LT. 17.5) GO TO 121
1511
              SISL(K,L) = 0.0738 * VEL - 2.2524
1512
              GO TO 1000
              IF (ANG .LT. 12.5) GO TO 122
1513
         121
              SISL(K,L) = 0.0485*VEL-1.4563
1514
1515
              GO TO 1000
              IF (ANG .LE. 7.5) GO TO 123
1516
         122
1517
              SISL(K,L) = 0.0233*VEL - 0.2330
1518
              GO TO 1000
              IF (ANG .LT. 0.0) GO TO 124
1519
         123
1520
              SISI(K,L) = 0.0049 * VEL + 0.6476
1521
              GO TO 1000
         124
1522
              CONTINUE
       C
              IF (ITEMP2 .GT. 40) GC TO 205
         204
1523
              IF (ANG .LT. 22.5) GO TO 125
1524
              SISI(K,L) = 0.0680 * VEL - 1.6505
1525
1526
              GO TO 1000
              IF (ANG _LT_ 17.5) GO TO 126
1527
         125
              SISI(K,L) = 0.0325*VEL+0.3078
1528
              GO TO 1000
1529
              IF (ANG .LT. 12.5) GO TG 127
1530
         126
1531
              SISL(K,L) = 0.0097*VEI+1.5534
1532
              GO TO 1000
1533
         127
              IF (ANG , LE. 7.5) GO TO 128
              SISL(K, L) = 0.0068 * VEL + 1.1553
1534
```

```
1535
               GO TO 1000
               IF (ANG .LT. 0.0) GO TO 129
 1536
          128
               SISL(K,L) =0.0049*VEL+0.9058
 1537
 1538
               GO TO 1000
 1539
          129
               CCNTINUE
         C
         C
          205
 1540
               GO TO 1005
         C
         C
         C
          9
               IF (ITEMP2 .GT. 15) GO TO 206
 1541
               IF (ANG .LT. 22.5) GO TO 130
 1542
               SISI(K,L) = -0.020 * VEL + 4.167
 1543
 1544
               GO TO 1000
               IF (ANG .LT. 17.5) GO TO 131
 1545
          130
               SISL(K,1) =0.003*VEL+1.970
 1546
 1547
               GO TO 1000
          131
               IF (ANG .LT. 12.5) GO TO 132
 1548
               SISL(K,L) = 0.025 * VEL - 0.200
 1549
 1550
               GO TO 1000
               IF (ANG .LE. 7.5) GO TO 133
 1551
          132
               SISL(K,I) = 0.0170*VEL-0.050
 1552
 1553
               GO TO 1000
               IF (ANG .LT. 0.0) GO TO 134
 1554
          133
               SISL(K,I) = 0.010*VEL+0.000
 1555
 1556
               GO TO 1000
1557
          134
               CONTINUE
         C
         C
               IF (ITEMP2 .GT. 25) GO TO 207
 1558
          206
 1559
               IF (ANG .LT. 22.5) GO TC 135
 1560
               SISI(K,L) = 0.115*VEL-3.567
 1561
               GC TO 1000
               IF (ANG _LT. 17.5) GO TO 136
 1562
          135
 1563
               SISL(K,L) = 0.076 * VEL - 2.320
 1564
               GO TO 1000
 1565
          136
               IF (ANG .LT. 12.5) GO TO 137
 1566
               SISL(K,L) = 0.050 * VEL - 1.500
1567
               GO TO 1000
          137
               IF (ANG .LE. 7.5) GO TO 138
 1568
               SISI(K, I) =0.024*VEL-0.240
 1569
 1570
               GO TO 1000
 1571
          138
               IF (ANG .LT. 0.0) GO TO 139
               SISL(K, I) = 0.005 * VEL + 0.667
 1572
 1573
               GO TO 1000
 1574
          139
               CONTINUE
        C
        C
 1575
          207
               IF (ITEMF2 .GT. 40) GO TO 208
               IF (ANG .LT. 22.5) GO TO 140
 1576
               SISL(K,L) = 0.070 * VEL - 1.700
 1577
 1578
               GO TO 1000
               IF (ANG .LT. 17.5) GO TC 141
 1579
          140
 1580
               SISL(K,L) = 0.0335 * VEL + 0.317
 1581
               GO TO 1000
 1582
          141
               IF (ANG .LT. 12.5) GO TO 142
 1583
               SISL(K,L) = 0.010*VEL+1.600
 1584
               GO TO 1000
          142
 1585
               IF (ANG .LE. 7.5) GO TO 143
               SISL(K, L) = 0.007 * VEL+ 1. 190
 1586
```

```
1587
              GO TO 1000
1588
              IF(ANG .LT. 0.0) GO TO 144
         143
              SISL(K,I) =0.005*VEL+0.933
1589
1590
              GO TO 1000
         144
1591
              CCNTINUE
       C
       C
1592
         208
              GO TO 1005
       C
       C
       C
         10
1593
              IF (ITEMP2 -GT. 15) GO TO 209
1594
              IF (ANG .LT. 22.5) GO TO 145
1595
              SISI(K, L) = 0.050 * VEL - 2.133
1596
              GO TO 1000
1597
         145
              IF (ANG .LT. 17.5) GO TO 146
1598
              SISI(K,L) = 0.026 * VEL - 0.897
1599
              GO TO 1000
1600
         146
              IF (ANG .LT. 12.5) GO TO 147
1601
              SISL(K, I) = 0.000 * VEL + 0.467
1602
              GO TO 1000
         147
              IF (ANG .LE. 7.5) GO TO 148
1603
              SISI(K,L) = 0.000 * VEL + 0.370
1604
1605
              GO TO 1000
1606
         148
              IF (ANG .LT. 0.0) GO TO 149
              SISI(K,I) = 0.000 *VEL+0.300
1607
              GO TO 1000
1608
         149
1609
              CCNTINUE
       C
       C
         209
              IF (ITEMP2 .GT. 25) GO TO 210
1610
1611
              IF (ANG .LT. 22.5) GO TO 150
1612
              SISL(K,L) = 0.015 * VEL - 0.100
1613
              GO TO 1000
16 14
         150
              IF (ANG .LT. 17.5) GO TO 151
1615
              SISL(K,L) = 0.010 * VEL + 0.700
1616
              GO TO 1000
16 17
         151
              IF (ANG .LT. 12.5) GO TO 152
              SISL(K,L) = 0.005*VEL-0.233
1618
1619
              GO TO 1000
              IF (ANG .LE. 7.5) GO TO 153
1620
         152
1621
              SISI(K, L) = 0.003 * VEL + 0.373
1622
              GO TO 1000
              IF (ANG .LT. 0.0) GO TO 154
1623
         153
              SISL(K,I) = 0.000 * VEL + 0.567
1624
              GO TO 1000
1625
         154
16 26
              CCNTINUE
       C
       C
1627
        210
              IF (ITEMF2 .GT. 40) GO TC 211
1628
              IF (ANG .LT. 22.5) GO TC 155
              SISL(K,L) = 0.015 *VEL - 0.067
1629
1630
              GO TO 1000
         155
              IF (ANG _LI. 17.5) GO TC 156
1631
              SISI(K,L) = 0.006 *VEL+0.457
1632
1633
              GO TO 1000
         156
              IF (ANG .LT. 12.5) GO TO 157
1634
              SISL(K,L) = -0.005*VEL + 1.033
1635
1636
              GO TO 1000
1637
         157
              IF (ANG .LE. 7.5) GO TO 158
1638
              SISI(K, L) =-0.005*VEL+0.967
```

```
1639
              GO TO 1000
1640
         158
              IF(ANG .LT. 0.0) GO TO 159
              SISL(K,L) = -0.005*VEL+0.933
1641
1642
              GO TO 1000
1643
         159
              CCNTINUE
        C
        C
1644
         211
              GO TO 1005
        C
        C
        C
1645
         11
              IF (ITEMP2 .GT. 15) GG TG 212
              IF (ANG _LT. 22.5) GO TO 160
1646
              SISI(K,L) = 0.060 * VEL - 2.400
1647
1648
              GO TO 1000
              IF (ANG .LT. 17.5) GO TO 161
1649
         160
1650
              SISL(K,L) = 0.0305 * VEL - 1.000
1651
              GO TO 1000
1652
         161
              IF (ANG .LT. 12.5) GO TO 162
1653
              SISL(K,L) = 0.020 * VEL - 0.533
1654
              GO TO 1000
1655
         162
              IF (ANG .LE. 7.5) GO TO 163
              SISL(K,I) = 0.009 * VEL - 0.027
1656
              GO TO 1000
1657
              IF (ANG .LT. 0.0) GO TO 164
1658
         163
1659
              SISL(R,L) = 0.005 * VEL + 0.133
1660
              GO TO 1000
              CCNTINUE
1661
         164
       C
        C
        212
1662
              IF (ITEMP2 .GT. 25) GO TO 213
              IF (ANG .LT. 22.5) GO TO 165
1663
              SISI(K,L) = 0.030 * VEL - 0.600
1664
              GO TO 1000
1665
              IF (ANG _LT. 17.5) GO TO 166
1666
         165
              SISI(K,L) = 0.0235*VEL-0.407
1667
1668
              GO TO 1000
1669
         166
              IF (ANG .LT. 12.5) GO TO 167
1670
              SISL(K,L) = 0.020 * VEL - 0.367
              GO TO 1000
1671
              IF (ANG .LE. 7.5) GO TO 168
1672
         167
1673
              SISL(K,I) = 0.0025*VEL+0.697
1674
              GO TO 1000
1675
         168
              IF (ANG .LT. 0.0) GO TO 169
              SISL(K,L) =-0.005*VEL+1.167
1676
1677
              GO TO 1000
         169
1678
              CONTINUE
       C
       C
              IF (ITEMP2 .GT. 40) GO TO 214
1679
        213
              IF (ANG .LT. 22.5) GO TO 170
1680
              SISI(K, L) = 0.025 * VEL - 0.033
1681
              GO TO 1000
1682
              IF (ANG _LT. 17.5) GO TO 171
1683
         170
1684
              SISL(K,L) = 0.0205*VEL+0.056
1685
              GO TO 1000
1686
         171
              IF (ANG .LT. 12.5) GO TO 172
              SISL(K, L) = 0.020 *VEL-0.133
1687
1688
              GC TO 1000
         172
              IF (ANG .LE. 7.5) GO TO 173
1689
1690
              SISL(K,L) = 0.012 *VEL + 0.460
```

```
1691
              GO TO 1000
1692
         173
              IF (ANG .LT. 0.0) GO TO 174
1693
              SISL(K,L) = 0.010 * VEL + 0.667
              GO TO 1000
1694
         174
1695
              CONTINUE
       C
       C
1696
         214
              GO TO 1005
       C
       C
       C
1697
         12
              IF (ITEMP2 .GT. 15) GO TO 215
1698
              IF (ANG _LT. 22.5) GO TO 175
              SISI(K,I) =0.1020*VEL-4.080
1699
1700
              GO TO 1000
1701
         175
              IF (ANG .LT. 17.5) GO TO 176
              SISL(K,L) = 0.0519 * VEL - 1.700
1702
1703
              GO TO 1000
1704
         176
              IF (ANG .LT. 12.5) GO TO 177
              SISI(K, L) = 0.0340 * VEL - 0.9061
1705
1706
              GO TO 1000
         177
              IF (ANG .LE. 7.5) GO TO 178
1707
1708
              SISI(K,I) = 0.0153*VEL-0.0459
1709
              GO TO 1000
1710
         178
              IF (ANG .LT. 0.0) GO TO 179
1711
              SISI(K,L) = 0.0085 * VEL + 0.2261
1712
              GO TO 1000
         179
1713
              CCNTINUE
       C
       C
              IF (ITEMP2 .GT. 25) GC TO 216
1714
        215
              IF (ANG _LT_ 22.5) GO TO 180
1715
              SISL(K,L) = 0.0510 * VEL - 1.020
1716
1717
              GO TO 1000
1718
         180
              IF (ANG _LT. 17.5) GO TO 181
              SISI(K,L) = 0.040 * VEL - 0.6919
1719
1720
              GO TO 1000
1721
         181
              IF (ANG .LT. 12.5) GO TO 182
              SISL(K,L) = 0.0340*VEL-0.6239
1722
              GO TO 1000
1723
              IF(ANG .LF. 7.5) GO TO 183
1724
         182
1725
              SISI(K, L) = 0.0043*VEL+1.1849
1726
              GO TO 1000
1727
              IF(ANG .LT. 0.0) GO TO 184
         183
1728
              SISI(K,I) = -0.0085 * VEL + 1.9839
1729
              GO TO 1000
1730
         184
              CCNTINUE
       C
              IF (ITEMP2 .GT. 40) GO TO 217
        216
1731
              IF (ANG .LT. 22.5) GO TO 185
1732
1733
              SISL(K,L) = 0.0425 * VEL - 0.0561
1734
              GO TO 1000
1735
         185
              IF (ANG _LT. 17.5) GO TC 186
              SISI(K,I) = 0.0349*VEI+0.0952
1736
              GO TO 1000
1737
              IF (ANG .LT. 12.5) GO TO 187
1738
         186
               SISI(K,I) = 0.0340 * VEL - 0.2261
1739
1740
               GO TO 1000
1741
         187
               IF(ANG .LE. 7.5) GO TO 188
               SISL(K,I) = 0.0204 * VEL + 0.7820
```

```
1743
              GO TO 1000
              IF (ANG .LT. 0.0) GO TO 189
         188
1744
              SISI(K,L) = 0.0170*VEL+1.1339
1745
1746
              GO TO 1000
1747
         189
              CCNTINUE
       C
       C
        217
1748
              GO TO 1005
       C
       C
       C
1749
         13
              IF (ITEMP2 .GT. 15) GO TO 218
              IF (ANG .LT. 22.5) GO TC 190
1750
              SISI(K,L) = 0.010 *VEL - 0.067
1751
1752
              GO TO 1000
              IF (ANG .LT. 17.5) GO TO 191
1753
         190
              SISI(K,L) = 0.0075*VEL-0.007
1754
1755
              GO TO 1000
         191
              IF (ANG .LT. 12.5) GO TO 192
1756
1757
              SISI(K,L) = 0.005 * VEL + 0.067
1758
              GO TO 1000
         192
              IF (ANG .LE. 7.5) GO TO 193
1759
              SISI(K,I) =0.0025*VEL+0.193
1760
              GO TO 1000
1761
              IF (ANG .LT. 0.0) GO TO 194
1762
         193
              SISI(K,L) = 0.0015*VEL+0.233
1763
1764
              GO TO 1000
1765
         194
              CCNTINUE
       C
       C
        218
              IF (ITEMP2 .GT. 25) GO TO 219
1766
              IF (ANG _LT. 22.5) GO TO 195
1767
              SISI(K, L) = 0.010 *VEL+0.067
1768
1769
              GO TO 1000
         195
              IF (ANG .LT. 17.5) GO TO 196
1770
1771
              SISL(K, I) = 0.0055 * VEL + 0.243
1772
              GO TO 1000
              IF (ANG .LT. 12.5) GO TC 197
        196
1773
1774
              SISL(K,L)=0.005*VEL+0.167
1775
              GO TO 1000
1776
         197
              IF (ANG .LE. 7.5) GO TO 198
              SISI(K, L) = 0.0045*VEL+0.133
1777
1778
              GO TO 1000
1779
        198
              IF (ANG .LT. 0.0) GO TO 199
              SISI(K,L) = 0.005*VEL+0.067
1780
              GO TO 1000
1781
1782
        199
              CCNTINUE
       C
       C
              IF (ITEMP2 .GT. 40) GO TO 220
        219
1783
              IF (ANG .LT. 22.5) GO TO 300
1784
1785
              SISI(K,L) = 0.000 *VEL + 0.767
1786
              GO TO 1000
1787
        300
              IF (ANG .LT. 17.5) GO TO 301
1788
              SISL(K,L) = 0.000 * VEL + 0.680
1789
              GO TO 100C
              IF (ANG .LT. 12.5) GO TO 302
1790
        301
              SISI(K,I) = 0.000 *VEL+0.600
1791
1792
              GO TO 1000
        302
              IF (ANG .LE. 7.5) GO TO 303
1793
```

SISL(K,L) = 0.0025*VEL+0.340

```
1795
              GO TO 1000
1796
         303
              IF (ANG .LT. 0.0) GO TO 304
1797
              SISL(K,L) = 0.005 * VEL + 0.133
              GO TO 1000
1798
1799
         304
              CCNTINUE
        C
        C
1800
         220
              GO TO 1005
        C
        C
        C
         14
              IF (ITEMP2 .GT. 15) GO TO 221
1801
              IF (ANG .LT. 22.5) GO TO 305
1802
1803
              SISI(K,L) = 0.010 * VEL + 0.367
1804
              GO TO 1000
1805
         305
              IF (ANG _LT. 17.5) GO TO 306
1806
              SISL(K,L) = 0.0065 * VEL + 0.407
              GO TO 1000
1807
1808
         306
              IF (ANG .LT. 12.5)
                                    GO TO 307
              SISI(K,L) = 0.005 * VEL + 0.333
1809
1810
              GO TO 1000
1811
        307
              IF (ANG .LE. 7.5) GO TO 308
1812
              SISL(K,L) = 0.0075 * VEL + 0.087
1813
              GO TO 1000
              IF (ANG .LT. 0.0) GO TO 309
1814
         308
              SISL(K,L) = 0.010 * VEL - 0.167
1815
1816
              GO TO 1000
         309
1817
              CONTINUE
        C
        C
              IF(ITEMP2 .GT. 25) GO TO 222
        221
1818
1819
              IF (ANG .LT. 22.5) GO TO 310
              SISI(K,L) = 0.015 * VEL + 0.167
1820
1821
              GO TO 1000
              IF(ANG _LT. 17.5) GO TO 311
1822
        310
              SISI(K,L) = 0.0115 * VEL + 0.303
1823
1824
              GO TO 1000
              IF (ANG .LT. 12.5) GO TO 312
1825
        311
              SISL(K,L) = 0.010*VEL+0.333
1826
              GO TO 1000
1827
              IF (ANG .LE. 7.5) GO TO 313
1828
        312
1829
              SISI(K,L) = -0.003 * VEL + 0.890
1830
              GO TO 1000
1831
        313
              IF (ANG .LT. 0.0) GO TO 314
              SISI(K,L) = -0.005 * VEL + 0.833
1832
1833
              GO TO 1000
        314
1834
              CCNTINUE
       C
       C
              IF (ITEMP2 .GT. 40) GO TO 223
        222
1835
              IF (ANG .LT. 22.5) GO TO 315
1836
              SISI(K,L) = 0.006 * VEL + 0.860
1837
1838
              GO TO 1000
              IF (ANG .LT. 17.5) GO TO 316
1839
        315
              SISI(K,L) = 0.0005*VEL+1.133
1840
1841
              GO TO 1000
              IF(ANG .LT. 12.5) GO TO 317
1842
        316
              SISL(K,L) = -0.004*VEL + 1.360
1843
1844
              GO TO 1000
1845
        317
              IF (ANG .LE. 7.5) GO TO 318
```

SISL(K,L) = -0.0065*VEL + 1.423

```
GO TO 1000
1847
              IF (ANG .LT. 0.0) GO TO 319
        318
1848
              SISI(K,I) =-0.008*VEL+1.447
1849
1850
              GO TO 1000
1851
        319
              CCNTINUE
       C
       C
1852
        223
              GO TO 1005
       C
       C
       C
         15
              IF (ITEMP2 -GT- 15) GO TO 224
1853
              IF (ANG _LT. 22.5) GO TO 320
1854
1855
              SISI(K,L) = 0.0170 * VEL + 0.6239
1856
              GO TO 1000
              IF (ANG _LT. 17.5) GO TO 321
1857
        320
              SISL(K,L) = 0.0111*VEL+0.6919
1858
1859
              GO TO 1000
              IF (ANG .LT, 12.5) GO TO 322
1860
        321
              SISL(K,L) = 0.0085*VEL+0.5661
1861
1862
              GO TO 1000
              IF (ANG .LE. 7.5) GO TO 323
1863
        322
              SISI(K,I) =0.0128*VEL+0.1479
1864
              GO TO 1000
1865
        323
              IF (ANG .LT. 0.0) GO TO 324
1866
              SISI(K,L) = 0.0170*VEL-0.2839
1867
1868
              GO TO 1000
        324
1869
              CCNTINUE
       C
       C
1870
        224
              IF (ITEMF2 .GT. 25) GO TO 225
              IF (ANG .LT. 22.5) GO TO 325
1871
1872
              SISL(K,L) = 0.0255 * VEL + 0.2839
1873
              GO TO 1000
1874
        325
              IF (ANG .LT. 17.5) GO TO 326
              SISI(K,L) = 0.0196 * VEL + 0.5151
1875
              GO TO 1000
1876
1877
        326
              IF (ANG .LT. 12.5) GO TO 327
              SISL(K,L) = 0.0170 * VEL + 0.5661
1878
              GO TO 1000
1879
              IF (ANG .LE. 7.5) GO TO 328
1880
         327
              SISL(K,L) = -0.0051 * VEL + 1.5130
1881
1882
              GO TO 1000
              IF (ANG .LT. 0.0) GO TO 329
        328
1883
              SISI(K,I) =-0.0085*VEL+1.4161
1884
              GO TO 1000
1885
        329
1886
              CCNTINUE
       C
       C
              IF (ITEMP2 .GT. 40) GO TO 226
1887
        225
              IF (ANG .LT. 22.5) GO TO 330
1888
              SISL(K,L) = 0.0102 * VEL + 1.4620
1889
              GO TO 1000
1890
              IF (ANG .LT. 17.5) GO TO 331
1891
        330
1892
              SISI(K,L) = 0.0009 * VEL + 1.9261
1893
              GO TO 1000
1894
        331
              IF (ANG _LT. 12.5) GO TO 332
              SISI(K,L) = -0.0068 * VEL + 2.3120
1895
1896
              GO TO 1000
              IF(ANG .LE. 7.5) GO TO 333
1897
        332
```

SISL(K,L) = -0.0111*VEL+2.4191

```
1899
              GO TO 1000
              IF (ANG .LT. 0.0) GO TO 334
1900
         333
1901
              SISL(K, L) = -0.0136 * VEL + 2.4599
1902
              GO TO 1000
1903
         334
              CCNTINUE
        C
        C
         226
1904
              GO TO 1005
        C
        C
        C
              IF (ITEMP2 .GT. 15) GO TO 227
1905
         16
              IF (ANG .LT. 22.5) GO TC 335
1906
              SISI(K,L) = 0.015 * VEL - 0.567
1907
1908
              GO TO 1000
1909
         335
              IF (ANG _LT_ 17_5) GO TC 336
              SISL(K,L) = 0.009 * VEL - 0.250
1910
1911
              GO TO 1000
         336
              IF (ANG .LT. 12.5) GO TO 337
1912
19 1.3
              SISI(K,I) = 0.005 * VEL - 0.067
1914
              GO TO 1000
1915
         337
              IF (ANG .LE. 7.5) GO TO 338
              SISI(K,L) = -0.001*VEL+0.260
1916
1917
              GO TO 1000
              IF (ANG .LT. 0.0) GO TO 339
         338
1918
              SISI(K,L) =-0.005*VEL+0.467
1919
1920
              GO TO 1000
1921
         339
              CCNTINUE
        C
       C
1922
         227
              IF (ITEMP2 .GT. 25) GO TO 228
1923
              IF (ANG .LT. 22.5) GO TC 340
              SISL(K,L) = 0.015 * VEL - 0.567
1924
1925
              GO TO 1000
              IF (ANG .LT. 17.5) GO TO 341
1926
         340
1927
              SISL(K,L) = 0.009 * VEL - 0.250
              GO TO 1000
1928
              IF (ANG .LT. 12.5) GO TC 342
1929
         341
1930
              SISI(K,L) = 0.005 * VEL - 0.067
              GO TO 1000
1931
1932
         342
              IF (ANG .LE. 7.5) GO TC 343
1933
              SISI(K,I) = -0.001*VEL+0.260
1934
              GO TO 1000
              IF (ANG .LT. 0.0) GO TO 344
1935
         343
1936
              SISL(K, L) = -0.005 * VEL + 0.467
1937
              GO TO 1000
1938
         344
              CCNTINUE
       C
       C
              IF (ITEMP2 .GT. 40) GO TO 229
1939
         228
              IF (ANG .LT. 22.5) GO TO 345
1940
              SISI(K, L) = 0.015 *VEL-0.567
1941
1942
              GO TO 1000
1943
         345
              IF (ANG .LT. 17.5) GO TO 346
              SISL(K, L) = 0.009 * VEL - 0.250
1944
1945
              GO TO 1000
1946
         346
              IF (ANG .LT. 12.5) GO TG 347
              SISI(K, L) = 0.005 * VEL - 0.067
1947
1948
              GO TO 1000
              IF (ANG .LE. 7.5) GO TO 348
1949
         347
              SISI(K,L) = -0.001*VEL+0.260
1950
```

```
1951
              GO TO 1000
              IF (ANG .LT. 0.0) GO TO 349
1952
         348
1953
              SISL(K, I) = -0.005 * VEL + 0.467
1954
              GO TO 1000
1955
         349
              CCNTINUE
       C
        C
         229
1956
              GO TO 1005
       C
       C
       C
1957
         17
              IF (ITEMP2 .GT. 15) GC TC 230
              IF (ANG .LT. 22.5) GO TO 350
1958
1959
              SISI(K,L) = 0.020 *VEL - 0.367
1960
              GO TO 1000
              IF (ANG .LT. 17.5) GO TC 351
1961
         350
              SISL(K,L) = 0.0125 * VEL - 0.037
1962
1963
              GO TO 1000
1964
         351
              IF (ANG .LT. 12.5) GO TC 352
              SISI(K,L) = 0.005 *VEL + 0.300
1965
1966
              GO TO 1000
              IF (ANG .LE. 7.5) GO TO 353
1967
         352
1968
              SISI(K,L) = -0.001*VEL+0.560
              GO TO 1000
1969
1970
         353
              IF (ANG .LT. 0.0) GO TO 354
              SISI(K,I) = -0.005*VEL+0.767
1971
1972
              GO TO 1000
1973
         354
              CCNTINUE
       C
       C
         230
              IF (ITEMP2 .GT. 25) GC TO 231
1974
              IF (ANG .LT. 22.5) GO TO 355
1975
              SISI(K,L) = 0.020 * VEL - 0.367
1976
1977
              GO TO 1000
1978
              IF (ANG _LT. 17.5) GO TO 356
         355
              SISI(K,L) = 0.0125 * VEL - 0.037
1979
              GO TO 1000
1980
1981
              IF (ANG .LT. 12.5) GO TC 357
         356
              SISI(K, L) = 0.005 * VEL + C.300
1982
1983
              GO TO 1000
              IF (ANG .LE. 7.5) GO TO 358
1984
         357
1985
              SISI(K,L) = -0.001*VEL+0.560
1986
              GO TO 1000
              IF (ANG .LT. 0.0) GC TO 359
1987
         358
1988
              SISL(K,L) = -0.005*VEL+0.767
              GO TO 1000
1989
1990
         359
              CCNTINUE
       C
       C
              IF (ITEMP2 .GT. 40) GC TO 232
         231
1991
              IF (ANG .LT. 22.5) GO TO 360
1992
              SISI(K,L) = 0.020 * VEL - 0.367
1993
1994
              GO TO 1000
1995
              IF (ANG .LT. 17.5) GO TC 361
         360
              SISI(K,L) = 0.0125*VEL-0.037
1996
1997
              GO TO 1000
1998
         361
              IF (ANG .LT. 12.5) GO TO 362
1999
              SISI(K,I) = 0.005*VEL+0.300
2000
              GO TO 1000
2001
         362
              IF (ANG .LE. 7.5) GO TO 363
              SISI(K, L) = -0.001*VEL+0.560
2002
```

```
2003
              GO TO 1600
              IF (ANG .LT. 0.0) GO TO 364
2004
         363
              SISI(K,I) = -0.005 * VEL + 0.767
2005
2006
              GO TO 1000
2007
         364
              CCNTINUE
       C
       C
2008
         232
              GO TO 1005
       C
       C
       C
         18
              IF (ITEMP2 .GT. 15) GC TO 233
2009
              IF (ANG .LT. 22.5) GC TC 365
2010
              SISI(K,L) = 0.0340*VEL - 0.6239
2011
2012
              GO TO 1600
              IF (ANG .LT. 17.5) GO TO 366
2013
         365
2014
              SISI(K,L) = 0.0213*VEL - 0.0629
2015
              GO TO 1000
         366
              IF (ANG .LT. 12.5) GO TO 367
2016
              SISI(K,L) = 0.0085*VEL+0.5100
2017
2018
              GO TO 1000
              IF (ANG .LE. 7.5) GO TO 368
2019
         367
              SISI(K, L) = -0.0017*VEI+0.9520
2020
2021
              GC TO 1000
              IF (ANG .LT. 0.0) GO TO 369
2022
         368
2023
              SISI(K, L) = -0.0085*VEL + 1.3039
2024
              GO TO 1000
2025
         369
              CCNTINUE
       C
       C
         233
              IF (ITEMP2 .GT. 25) GO TO 234
2026
              IF (ANG .LT. 22.5) GC TO 370
2027
              SISI(K, L) = 0.0340*VEL-0.6239
2028
2029
              GO TO 1000
         370
              IF (ANG .LT. 17.5) GO TO 371
2030
              SISI(K, L) = 0.0213*VEL-0.0629
2031
              GO TO 1000
2032
2033
         371
              IF (ANG .LT. 12.5) GO TO 372
              SISI(K,L) = 0.0085*VEL+0.5100
2034
2035
              GO TO 1000
              IF (ANG .LE. 7.5) GO TO 373
2036
         372
2037
              SISI(K, I) = -0.0017*VEI+0.9520
2038
              GO TO 1000
              IF (ANG .LT. 0.0) GO TO 374
2039
         373
              SISL(K,I) = -0.0085*VEI + 1.3039
2040
2041
              GO TO 1000
2042
        374
              CCNTINUE
       C
       C
        234
              IF (ITEMP2 .GT. 40) GO TO 235
2043
2044
              IF (ANG .LT. 22.5) GO TO 375
2045
              SISL(K,L) = 0.0340 * VEL - 0.6239
2046
              GO TO 1000
2047
         375
              IF (ANG .LT. 17.5) GO TO 376
2048
              SISI(K,L) = 0.0213*VEL-0.0629
              GO TO 1000
2049
              IF (ANG .LT. 12.5) GO TO 377
2050
         376
2051
              SISI(K,L) = 0.0085*VEL+0.5100
2052
              GO TO 1000
2053
         377
              IF (ANG .LE. 7.5) GO TO 378
```

SISI(K,L) = -0.0017*VEL+0.9520

```
2055
              GO TO 1000
              IF (ANG .LT. 0.0) GO TO 379
        378
2056
              SISL(K,I) =-0.0085*VEL+1.3039
2057
2058
              GO TO 1000
2059
        379
              CCNTINUE
       C
       C
2060
        235
              GO TO 1005
       C
       C
2061
        1000 CCNTINUE
              SI ADJUSTMENT FACTORS FOR DITCH TYPES.
       C
       C
2062
              IF (ITEMP3 .GE. 8) GO TC 400
              IF (ITEMP3 .LT. 8 .AND. H44(II) .GT. 4) GO TO 401
2063
              IF (ITEMP3 .LE. 4) GO TO 402
2064
       C
       C
       C
        400
2065
              SISI(K,I) = SISI(K,I) *0.70
2066
              GO TO 403
2067
        401
              SISL(K,L) = SISL(K,L) *0.81
2068
              GO TO 403
       C
2069
        402
              SISI(K,L) = SISI(K,L) * 1.00
       C
              SI ADJUSTMENT FACTORS FOR WATER IN DITCH
              IF (IFIAG .EQ. 1 .AND. E48 (II) .EQ. 2) GO TO 800
2070
              IF (IFLAG . EQ. 1) GO TO 810
2071
              IF (IFLAG .FQ. 2 .AND. C21(II,JJ) .EQ. 2) GO TO 800
2072
2073
              GO TO 810
        800
              SISI(K,L) = SISI(K,L) * 1.05
2074
2075
              GO TO 811
              IF (IFLAG .EQ. 1 .AND. E48 (II) .EQ. 3) GO TO 801
2076
        810
              IF (IFLAG .EQ. 1) GO TO 811
2077
              IF (IFLAG .EQ. 2 .AND. C21(II,JJ) .EQ. 3) GO TO 801
2078
2079
              GC TO 811
        801
              SISI(K,L) = SISI(K,L) *1.10
2080
2081
        811
              CCNTINUE
       C
              IF (SISI (K, 1) . GE. 0.2) GO TO 405
2082
        403
2083
        404
              SISI(K,I) = 0.200
2084
        405
              CCNTINUE
       C
       C
              SI ADJUSTMENT FACTORS FOR ROUGH SLOPES
       C
              IF (IFLAG .EQ. 1 .AND. H47 (II) .EQ. 2) GO TC 901
2085
              IF (IFLAG .EQ. 1) GO TO 905
2086
              IF (IFLAG .EQ. 2 .AND. C20(II, JJ) .EQ. 2) GO TO 901
2087
              GO TO 905
2088
              IF (SISI (K,L) .GE. 0.30) GO TO 905
        901
2089
2090
              SISI(K,I) = 0.30
2091
        905
              GO TO 1002
       C
       C
        1002 CCNTINUE
2092
2093
        1001 CONTINUE
2094
              GO TO 1006
         1003 IF (IFLAG .EQ. 2) GO TO 1200
2095
```

2096

EFFOR 1(II,1) = 20

```
154
2097
            GO TO 1006
2098
        1200 \text{ ERRCR } 1(II,JJ) = 20
2099
            GO TO 1006
2100
        1004 IF (IFLAG _EQ_ 2) GO TO 1201
2101
            ERROR1(II,1) = 21
2102
            GO TO 1006
2103
        1201 ERROR 1(II,JJ) = 21
2104
            GO TO 1006
2105
        1005 IF (IFLAG .EQ. 2) GO TO 1202
2106
            ERROR 1 (II, 1) = 22
2107
            GO TO 1006
2108
        1202 ERROR 1(II,JJ) = 22
2109
        1006 CONTINUE
2110
       9998 RETURN
2111
            END
       C
       C
       C
       C
       C
       C
       C
       C
      C
      2112
            SUBROUTINE COST3
      C
      C
            THIS SURROUTINE CALCULATES TOTAL ACCIDENT COST GIVEN A SEVERITY
      C
            INDEX (SI). THREE DIFFERENT TYPES OF ACCIDENTS ARE USED, PROPERTY
      C
            DAMAGE CNIY, INJURY ACCIDENT, FATAL ACCIDENT.
                                                          THE COSTS OF EACH
      C
            TYPE OF ACCIDENT ARE INPUT FROM THE COST FORM.
                                                           THE SI IS INPUTTED
      C
            FRCM EITHER WEEAM1 OR WEEAM2 OR SLOPE SUBROUTINES.
      C
      C
2113
            DIMENSION HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
                      ERROR1 (3,4), CS (5,5), IZERG (4)
2114
            DIMENSION TTAC (4), CE(4), BC(4), ICE(4), ITAC (4), NOTCE (4)
            DIMENSIGN COST1(4), NDES(100), NHWY(100), NSPD(100), NADT(100)
2115
            DIMENSION OFSET (5)
2116
2117
            DIMENSION SIGR (5,5)
2118
            DIMENSION FI(5,5)
                       HO(3), H1(3), H2(3), H3(3), H4(3), H5(3), H6(3),
2119
            DIMENSICN
                        H7(3), H8(3), H9(3), H10(3), H11(3), H12(3),
                       H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                       H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                       H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                       H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                       H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                       H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                       H63(3)
2120
            DIMENSICN
                        C1(3,4), C2(3,4), C3(3,4), C4(3,4), C5(3,4),
                       C6(3,4),C7(3,4),C8(3,4),C9(3,4),C10(3,4),C12(3,4),
```

```
C13(3,4), C14(3,4), C15(3,4), C16(3,4), C17(3,4),
                          C18(3,4), C19(3,4), C20(3,4), C21(3,4), C25(3,4),
                          C26(3,4), C27(3,4), C28(3,4), C29(3,4), C30(3,4),
                          C31(3,4), C32(3,4), C33(3,4), C40(3,4), C41(3,4),
                          C42(3,4), C45(3,4), C46(3,4), C22(3,4), C60(3,4),
                          C61(3,4), C62(3,4), C63(3,4)
       C
2121
              DIMENSICN IMP (5,5)
2122
              DIMENSION SPEED (5), ANGLE (5), SISL (5,5)
2123
                          TAC(5,5), SI(5,5)
              DIMENSION
              INTEGER ERROR 1
2124
              INTEGER TEMP1, TEMP2, X
2125
2126
                        HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
              INTEGER
                        H16,H17,H22,H23,H24,H25,H26,H27,H30,H31,H32,H33,H34,
                        H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                        H51, H52, H60, H61, H62, H63
       C
2127
                        C1,C2,C3,C5,C6,C7,C8,C10,C12,C13,C14,C15,C16,C17,C18,
              INTEGER
                        C19,C20,C21,C22,C25,C26,C27,C28,C29,C30,C31,C32,C33,
                        C40,C41,C42,C60,C61,C62,C63,C9
       C
2128
              INTEGER SPEED, VEL
2129
              CCMMON / MAIN5 / HIB, HI, CMB, CM, ACB, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
                                 ACA, RMA, TACIMP, IZERO, LIFE, INT
              CCMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
2130
              CCMMON/ CST1/COST1
2131
2132
              CCMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
2133
              CCMMON / TAC1 / TAC
       C
2134
              COMMON/ ENFRE /ENFR
       C
              COMMON/ IDENT /I,J,II,JJ,ICARD,IFLAG,IMPR,NTITLE
2135
       C
2136
              CCMMON/ LATOF /OFSET
       C
       C
       C
              CCMMON/ IMPROB /IMP
2137
       C
2138
              CCMMON/ GRSI /SIGR
       C
2139
              CCMMON/ HURT /PI,SI
       C
2140
              CCMMON/ SLOPE1 /SISL
2141
              CCMMON/ DATA1 /HO,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,
                               H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                               H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                               H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
       C
       C
       C
2142
              CCMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
                          C22,C16,C17,C18,C19,C20,C21,C25,C26,C27,C28,C29,C30,
                               C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
       C
2143
              COMMON/ GRCRC / CS
2144
              CCMMON/ ERROR /ERROR 1
2145
                     INJURY
              REAL
2146
              REAL IMP
       9999
2147
              CCNTINUE
```

```
156
```

```
C
             PDC = 900.00
       C
             INJURY = 4900.00
             FATAL = 336000.00
       C
2148
             DO 1 K = 1,5
2149
             DO 2 L = 1.5
2150
             TEMP = SI(K,L)
       C
             PRINT, 1, TEMP
2151
             IF (TEMF.GT. 2.75) GO TO 10
2152
             TAC(K_aI) = ((-1934.76*TEMP) + (12750.34*(TEMP**2))
            *+ (9679.45* (TEMP**3)))
       C
             PRINT, 2, TAC
2153
             GC TO 20
2154
        10
             TAC(K,L) = 300000.0
             CCNTINUE
2155
        20
2156
         2
             CCNTINUE
2157
         1
             CCNTINUE
       C
       C
       C
       C
        9998 RETURN
2158
2159
             END
       C
       C
       C
       C
       C
       C
2160
             SUBROUTINE REPAIR
       C
       C
       C
             THIS SUBROUTINE CALCULATES THE COLLISION MAINTEANCE COSTS.
       C
       C
       C
       C
2161
             DIMENSION HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
                       FRROR1(3,4), CS(5,5), IZERO(4)
2162
             DIMENSION TTAC (4), CE(4), BC(4), ICE(4), ITAC (4), NOTCE (4)
             DIMENSICH COST1(4), NDES(100), NHWY(100), NSPD(100), NADT(100)
2163
2164
             DIMENSION OFSET (5)
2165
             DIMENSION SIGR (5,5)
2166
             DIMENSION PI (5,5)
2167
             DIMENSION
                        HO(3), H1(3), H2(3), H3(3), H4(3), H5(3), H6(3),
                                  H8(3), H9(3), H10(3), H11(3), H12(3),
                         H7(3),
                        H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                         H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                        H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                        H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                        H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                        H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                        H63(3)
2168
             DIMENSICN
                         C1(3,4).
                                   C2(3,4), C3(3,4), C4(3,4), C5(3,4),
                        C6 (3,4), C7 (3,4), C8 (3,4), C9 (3,4), C10 (3,4), C12 (3,4),
                        C13 (3,4), C14 (3,4), C15 (3,4), C16 (3,4), C17 (3,4),
                        C18(3,4), C19(3,4), C20(3,4), C21(3,4), C25(3,4),
                        C26(3,4), C27(3,4), C28(3,4), C29(3,4), C30(3,4),
```

```
C31(3,4), C32(3,4), C33(3,4), C40(3,4), C41(3,4),
                           C42(3,4), C45(3,4), C46(3,4), C22(3,4), C60(3,4),
                           C61(3,4), C62(3,4), C63(3,4)
        C
2169
              DIMENSICN IMP (5,5)
2170
              DIMENSION SPEED (5) , ANGLE (5) , SISL (5,5)
2171
              DIMENSION
                           TAC(5,5), SI(5,5)
2172
              INTEGER ERROR1
2173
              INTEGER TEMP1, TEMP2, X
2174
                        HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
              INTEGER
                        H16, H17, H22, H23, H24, H25, H26, H27, H30, H31, H32, H33, H34,
                        H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                        H51, H52, H60, H61, H62, H63
       C
                        C1,C2,C3,C5,C6,C7,C8,C10,C12,C13,C14,C15,C16,C17,C18,
2175
              INTEGER
                        C19,C20,C21,C22,C25,C26,C27,C28,C29,C30,C31,C32,C33,
                        C40,C41,C42,C60,C61,C62,C63,C9
       C
              INTEGER SPEED, VEL
2176
2177
              CCMMON / MAIN5 / HIB, HI, CMB, CM, ACB, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
                                 ACA, RMA, TACIMP, IZERO, LIFE, INT
2178
              CCMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
2179
              CCMMON/ CST1/COST1
2180
              COMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
       C
       C
2181
              CCMMON/ ENFRE /ENFR
       C
2182
              CCMMON/ IDENT /I, J, II, JJ, ICARD, IFLAG, IMPR, NTITLE
       C
2183
              CCMMON/ LATOF /OFSET
       C
       C
       C
2184
              CCMMON/ IMPROB /IMP
       C
2185
              CCMMON/ GRSI /SIGR
       C
              CCMMON/ HURT /PI,SI
2186
       C
2187
              CCMMON/ SLOPE1 /SISL
2188
              CGMMON/ DATA1 /HO,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,
                               H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                               H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                               H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
       C
       C
       C
              CCMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
2189
                          C22, C16, C17, C18, C19, C20, C21, C25, C26, C27, C28, C29, C30,
                               C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
       C
2190
              CCMMON/ GRCRC / CS
2191
              CCMMON/ ERROR /ERROR1
2192
              REAL IMP
2193
       9999
              CONTINUE
2194
              ASUM = 0.0
2195
              SUM = 0.0
         --- IFLAG CHECKS TO SEE IF THE DATA IS FROM A HAZARD OR AN IMPROVEMENT
       C
                              IFLAG = 1--HAZARD.
                                                    IFLAG = 2--IMPROVEMENT ALTERNATIVI
       C
              ALIERNATIVE.
2196
```

IF (IFLAG. EQ. 1) GO TO 17

```
158
```

```
2197
            ALCNG 1= (ABS(C46(II,JJ)-C45(II,JJ)))*5280.0
      C
2198
            GO TO 21
2199
         17 ALCNG 1= (ABS (H19 (II) - H18 (II))) *5280.0
      C
2200
         21 DO 6 K = 1.5
2201
            GO TO (1,2,3,4,7),K
            TEMP = 0.48*OFSET(1)
2202
       1
      C
2203
            GO TO 10
2204
            TEMP = 0.20*OFSET(2)
       2
      C
2205
            GC TO 10
2206
       3
            TEMP = 0.12*OFSET(3)
      C
2207
            GO TO 10
2208
            TEMP = 0.08*OFSET(4)
       4
      C
2209
            GO TO 10
       7
            TEMP = 0.12*OFSET (5)
2210
      C
2211
       10
            DO 5 KK = 1.5
      C
2212
            SUM = IMP (KK, K) *CS (KK, K) *ALONG 1+SUM
      C
      C
2213
          5 CCNTINUE
2214
            ASUM = TEMP*SUM + ASUM
2215
          6 CCNTINUE
      C
      C
2216
           CM = (ASUM * ENFR * 0.50) / 5280.0
      C
      C
      C --- THE DIRECTIONAL SPLIT IS ASSUMED TO BE 0.5 IN EACH CASE
2217
       9998 RETURN
2218
            END
      C
      C
      C
      2219
           SUBROUTINE ACCID
      C
      C
           THIS SUBROUTINE CALCULATES ACCIDENT COSTS.
      C
      C
      C
      C
      C
```

C

```
DIMENSION HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
2220
                         ERROR 1 (3,4), CS (5,5), IZERO (4)
              DIMENSION TTAC(4), CE(4), BC(4), ICE(4), ITAC(4), NOTCE(4)
2221
              DIMENSICN COST1 (4), NDES (100), NHWY (100), NSPD (100), NADT (100)
2222
              DIMENSICN OFSET (5)
2223
              DIMENSICN SIGR (5,5)
2224
              DIMENSION PI(5,5)
2225
                          HO (3), H1 (3), H2 (3), H3 (3), H4 (3), H5 (3), H6 (3),
2226
              DIMENSION
                           H7(3), H8(3), H9(3), H10(3), H11(3), H12(3),
                          H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                          H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                          H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                          H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                          H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                          H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                          H63(3)
                           C1(3,4), C2(3,4), C3(3,4), C4(3,4),
                                                                      C5(3,4),
2227
              DIMENSION
                          C6 (3,4), C7 (3,4), C8 (3,4), C9 (3,4), C10 (3,4), C12 (3,4),
                          C13(3,4), C14(3,4), C15(3,4), C16(3,4), C17(3,4),
                          C18(3,4), C19(3,4), C20(3,4), C21(3,4), C25(3,4),
                          C26(3,4), C27(3,4), C28(3,4), C29(3,4), C30(3,4),
                          C31(3,4), C32(3,4), C33(3,4), C40(3,4), C41(3,4),
                          C42(3,4), C45(3,4), C46(3,4), C22(3,4), C60(3,4),
                          C61(3,4), C62(3,4), C63(3,4)
       C
              DIMENSION IMP (5,5)
2228
              DIMENSION SPEED (5), ANGLE (5), SISL (5,5)
2229
                          TAC(5,5), SI(5,5)
2230
              DIMENSION
2231
              INTEGER ERROR1
              INTEGER TEMP1, TEMP2, X
2232
                       HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
2233
              INTEGER
                        H 16, H 17, H22, H23, H24, H25, H26, H27, H30, H31, H32, H33, H34,
                        H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                        H51, H52, H60, H61, H62, H63
       C
                       c1,c2,c3,c5,c6,c7,c8,c10,c12,c13,c14,c15,c16,c17,c18,
2234
              INTEGER
                       C19,C20,C21,C22,C25,C26,C27,C28,C29,C30,C31,C32,C33,
                       C40,C41,C42,C60,C61,C62,C63,C9
       C
2235
              INTEGER SPEED, VEL
              CCMMON / MAIN5 / HIB, HI, CMB, CM, ACB, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
2236
                                ACA, RMA, TACIMP, IZERO, LIFE, INT
              CCMMON / RESLT / ITAC, CE, BC, NOTCE, ICE, ITAC, IGR
2237
              COMMON/ CST1/COST1
2238
              CCMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
2239
              COMMON / TAC1 / TAC
2240
       C
              CCMMON/ ENFRE /ENFR
2241
       C
              COMMON/ IDENT /I,J,II,JJ,ICARD,IFLAG,IMPR,NTITLE
2242
       C
2243
              CCMMON/ LATOF /OFSET
       C
       C
       C
              CCMMON/ IMPROB /IMP
2244
       C
              CCMMON/ GRSI /SIGR
2245
       C
2246
              CCMMON/ HUFT /PI,SI
```

C

```
160
2247
               CCMMON/ SLOPE1 /SISL
               CCMMON/ DATA1 /HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13,
2248
                                H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                                H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                                H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
        C
        C
        C
2249
               CCMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
                           C22, C16, C17, C18, C19, C20, C21, C25, C26, C27, C28, C29, C30,
                                C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
        C
2250
               CCMMON/ GRCRC / CS
2251
               CCMMON/ ERROR /ERROR1
2252
               REAL IMP
2253
        9999
               CCNTINUE
2254
               ASUM = 0.0
2255
               SUM = 0.0
         --- IFLAG CHECKS TO SEE IF THE DATA IS FROM A HAZARD OR AN IMPROVEMENT
        C
               ALTERNATIVE.
                               IFLAG = 1--HAZARD.
                                                      IFLAG = 2--IMPROVEMENT ALTERNATIVE
2256
               IF (IFLAG. EQ. 1) GO TO 17
2257
               ALGNG 1= (ABS(C46(II,JJ)-C45(II,JJ)))*5280.0
        C
               PRINT, 2, ALCNG 1
2258
               GO TO 21
2259
           17 ALCNG 1= (ABS (H19 (II) - H18 (II))) *5280.0
               PRINT, 1, ALGNG1
2260
           21 DO 6 K = 1,5
2261
               GO TO (1,2,3,4,7),K
2262
               TEMP = 0.48*OFSET(1)
         1
        C
               PRINT, 1, TEMP
2263
               GO TO 10
2264
         2
               TEMP = 0.20*OFSET(2)
               PRINT, 2, TEMP
2265
               GC TO 10
2266
         3
               TEMP = 0.12*OFSET(3)
        C
               PRINT, 3, TEMP
2267
               GO TO 10
2268
               TEMP = 0.08*OFSET(4)
        C
               PRINT, 4, TEMP
2269
               GO TO 10
         7
2270
               TEMP = 0.12*OFSET(5)
               PRINT, 5, TEMP
2271
         10
               DC 5 KK = 1.5
        C
               PRINT, O, SUM
2272
               SUM = IMP(KK,K) *TAC(KK,K) *ALONG1+SUM
        C
               PRINT, 1, SUM
        C
               PRINT, 1, IMF, 2, TAC, 3, ALCNG 1
2273
            5 CONTINUE
        C
               PRINT, C, ASUM
2274
               ASUM = TEMF*SUM + ASUM
        C
               PRINT, 1, ASUM
        C
              PRINT, 1, TEMP, 2, SUM
2275
            6 CONTINUE
        C
        C
2276
               AC = (ENFR*ASUM*0.50)/5280.0
        C
               PRINT, AC
               PRINT, 1, ENFR, 2, ASUM
        C --- THE DIRECTIONAL SPLIT IS ASSUMED TO BE 0.5 IN EACH CASE
2277
         9998 RETURN
```

2278

END

```
C
2279
             SUBROUTINE NOIMPR
       C
       C
              NO IMPROVEMENT SUBROUTINE FOR SLOPES
       C******************************
             DIMENSION HI(3), HIA(4), CHI(3,4), CMA(4), ACA(4), RMA(4), TACIMP(4),
2280
                       ERROR1(3,4),CS(5,5),IZERO(4)
             DIMENSION TTAC(4), CE(4), BC(4), ICE(4), ITAC(4), NOTCE(4)
2281
2282
             DIMENSICH COST1 (4), NDES (100), NHWY (100), NSPD (100), NADT (100)
             DIMENSION OFSET (5)
2283
             DIMENSICN SIGR (5,5)
2284
2285
             DIMENSION PI(5,5)
                        HO (3), H1 (3), H2 (3), H3 (3), H4 (3), H5 (3), H6 (3),
2286
             DIMENSICN
                         H7(3), H8(3), H9(3), H10(3), H11(3), H12(3),
                        H13(3), H14(3), H15(3), H16(3), H17(3), H18(3),
                        H19(3), H22(3), H23(3), H24(3), H25(3), H26(3),
                        H27(3), H30(3), H31(3), H32(3), H33(3), H34(3),
                        H35(3), H36(3), H37(3), H38(3), H41(3), H42(3),
                        H43(3), H44(3), H45(3), H46(3), H47(3), H48(3),
                        H50(3), H51(3), H52(3), H60(3), H61(3), H62(3),
                        H63(3)
2287
             DIMENSION
                         C1(3,4),
                                   C2(3,4), C3(3,4), C4(3,4),
                                                                 C5(3,4),
                        C6 (3,4),C7 (3,4),C8 (3,4),C9 (3,4),C10 (3,4),C12 (3,4),
                        C13(3,4), C14(3,4), C15(3,4), C16(3,4), C17(3,4),
                        C18(3,4), C19(3,4), C20(3,4), C21(3,4), C25(3,4),
                        C26(3,4), C27(3,4), C28(3,4), C29(3,4), C30(3,4),
                        C31(3,4), C32(3,4), C33(3,4), C40(3,4), C41(3,4),
                        C42(3,4), C45(3,4), C46(3,4), C22(3,4), C60(3,4),
                        C61(3,4), C62(3,4), C63(3,4)
       C
             DIMENSION IMP (5,5)
2288
2289
             DIMENSION SPEED (5), ANGLE (5), SISL (5,5)
                        TAC(5,5), SI(5,5)
2290
             DIMENSICN
             INTEGER ERBOR1
2291
             INTEGER TEMP1, TEMP2, X
2292
                      HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15,
2293
             INTEGER
                      H16, H17, H22, H23, H24, H25, H26, H27, H30, H31, H32, H33, H34,
                      H35, H36, H37, H38, H41, H42, H43, H44, H45, H46, H47, H48, H50,
                      H51, H52, H60, H61, H62, H63
       C
                      C1,C2,C3,C5,C6,C7,C8,C10,C12,C13,C14,C15,C16,C17,C18,
2294
             INTEGER
                      c19,c20,c21,c22,c25,c26,c27,c28,c29,c30,c31,c32,c33,
                      C40,C41,C42,C60,C61,C62,C63,C9
       C
2295
             INTEGER SPEED, VEL
             COMMON / MAIN5 / HIB, HI, CMB, CM, ACE, AC, RMB, RM, TACHAZ, HIA, CHI, CMA,
2296
                              ACA, RMA, TACIMP, IZERO, LIFE, INT
             CCMMON / RESLT / TTAC, CE, BC, NOTCE, ICE, ITAC, IGR
2297
2298
             CCMMON/ CST1/COST1
             CCMMON / NCONT / NCOUNT, IPAGE, LINES, NDES, NHWY, NSPD, NADT
2299
       C
       C
2300
             COMMON/ ENFRE /ENFR
```

C

```
162
```

```
2301
               CCMMON/ IDENT /I,J,II,JJ,ICARD,IFLAG,IMPR,NTITLE
        C
 2302
               CCMMON/ LATOR /OFSET
        C
        C
        C
2303
               CCMMON/ IMPROB /IMP
        C
2304
               CCMMON/ GRSI /SIGR
        C
2305
               COMMON/ HURT /PI,SI
        C
2306
               CCMMON/ SLOPE1 /SISL
               CCMMON/ DATA1 /HO, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13,
2307
                                H14, H15, H16, H17, H18, H19, H22, H23, H24, H25, H26, H27,
                                H30, H31, H32, H33, H34, H35, H36, H37, H38, H41, H42, H43,
                                H44, H45, H46, H47, H48, H50, H51, H52, H60, H61, H62, H63
        C
        C
        C
2308
               CCMMON/ DATA2 /C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C12,C13,C14,C15,
                            C22, C16, C17, C18, C19, C20, C21, C25, C26, C27, C28, C29, C30,
                                C31, C32, C33, C40, C41, C42, C45, C46, C60, C61, C62, C63
        C
2309
               CCMMON/ GRCRC / CS
               CCMMON/ ERROR / ERROR 1
23 10
23 11
               REAL IMP
        9999
2312
               CCNTINUE
2313
               C22(II,JJ) = H41(II)
23 14
               C15(II,JJ) = H42(II)
2315
               C16(II,JJ) = H43(II)
2316
               C17(II,JJ) = H44(II)
               C18(II,JJ) = H45(II)
23 17
2318
               C19(II,JJ) = H46(II)
2319
               C20(II,JJ) = H47(II)
2320
               C21(II,JJ) = H48(II)
2321
               C45(II,JJ) = H18(II)
2322
               C46(II,JJ) = H19(II)
         9998 RETURN
2323
2324
               END
```

SENTRY

APPENDIX

C. HVOSM SAMPLE COMPUTER SIMULATIONS

UNL-NDP GUARDRAIL STUDY HVOSM SIMULATIONS ON EMBANKMENT FILLS 70 MPH AND 15 DEG ENCRDACHMENT (RUN NO. 130) F.S.=3:1. B.S.=4:1

INITIAL CONDITIONS

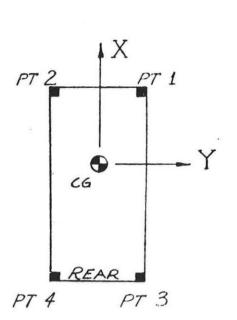
PHIO = THETAO = PSIO = PHIRO = PSIFIO =	2.761 -0.741 15.000 0.0	DEGREES	DELTA	= 1 = 2=	0.0	• •	D(PSIF)/	0.0	DEG/SEC
		.0	DELTA	3=	0.0				v.

UO	=123	2.000	INI	SEC
VO	*	0.0		•
WO	=	0.0		•
D(DEL1)/DT	=	0.0		•
D(DEL2)/DY	338	0.0	- 0	T
D(DEL3)/DT	22	0.0		0

TI	RE DATA	TERRAIN TABLE ARGUMENTS
KT	1098.000 LB/IN	
SIGMAT	= 3.000	
LAMBDAT	= 10.000	
AO :	=4400.000	SOIL DAMPING= 0.001 SPI
AL	8.276	SOIL FRICT. = 0.250
A2	=2900.000	SSTIFF = 4000. LB/IN
A3	= 1.780	NO.X TEMPS. = 2
A4	=3900.000	NO.Y TEMPS. = 5
AMU	= 0.200	NO. VAR AMU = 1
ONEGT	= 1.000	TABLES

COEFF. OF TIRE FRICTION

VS.


(SPEED AND LOAD) DATA
ALPHA= 0.0 1/(LB-MPH)

XKVTH= 0.0 1/ MPH

XKL= 0.0 1/LE

VEHICLE MONITOR POINTS

	(IÑ.)	(IN.)	(IÑ.)
POINT	1 81.517	39,500	12.138
POINT	2 81.517	-39.500	12.138
POINT	3-117.483	39.000	8.138
POINT	4-117.483	-39.000	8.138

UNL-NDR GUARDRAIL STUDY HVOSM SIMULATIONS ON EMBANKMENT FILLS 70 MPH AND 15 DEG ENCROACHMENT (RUN NO. 130) F.S.=3:1, B.S.=4:1

PROGRAM CONTROL DATA

```
STAPT TIME
                                 0.0
                                         SEC
                                 3.100
END TIME
INCR FOR INTEGRATION =
                                 0.0050
                                          . .
PRINT INTERVAL = THETA MAX (TO SWITCH)=
                                 0.010
                                70.000 DEG
UVWMIN(STOP)
                            =
                                 0.0
PORMIN(STOP)
                                 0.0
                                      (=0.NO CURB.=1 CURB.=-1 STEER DEG.OF FREEDOM)
                            =
INDCPB
                                -1
                                     (=0 VAR.ADAMS-MOULT.,=1 RUNGE-KUTTA.=2FIX.AM)
(=1.0 SUPPLY INITIAL POSITION)
(=0.0 CAR RESTS ON TERRAIN)
MODE OF INTEGRATION
                                3
                                0.
DTCM91
```

ACCELEROMETER POSITIONS

```
-34.480
                   INCHES
Y1
      =
           0.0
Z 1
                      . .
      =
           4.000
X2
          -5.983
      =
                      . .
      =
         -16.500
22
           3.138
```

DIMENSIONS

```
54.5170 INCHES
                               KF
                                     = 100.000 LB./IN.
B
        64.4830
                   . .
                               KR
                                     =
                                        105.000 LB./IN.
                               CF
TF
        61.0000
     =
                                     =
                                         30.000 LBS.
TP
     =
        60.0000
                   . .
                               CP.
                                         45.000 LBS.
ZF
     =
        10.1380
                   . .
                            EPSILONF =
                                                 IN./SEC.
                                          0.001
ZF
                   . .
     =
       12.0880
                            EPSILONR=
                                          0.001
                                                 IN./SEC.
RHO
        -2.0000
                   . .
                                          3.500 LB-SEC/IN
     =
                               CF
RW
        14.0000
                   . .
                               CR
                                          3.900 LB-SEC/IN
                              AKFC
                                       300.000 LB/IN
                              AKFCP =
                                         2.000 LB/IN3
                              OMEGFC=
                                         -3.000 IN
                              AKFE
                                    = 300.000 LB/IN
                              AKFEP =
                                          2.000 LB/IN3
                              OMEGFE=
                                         5.000 IN
```

SUSPENSION DATA

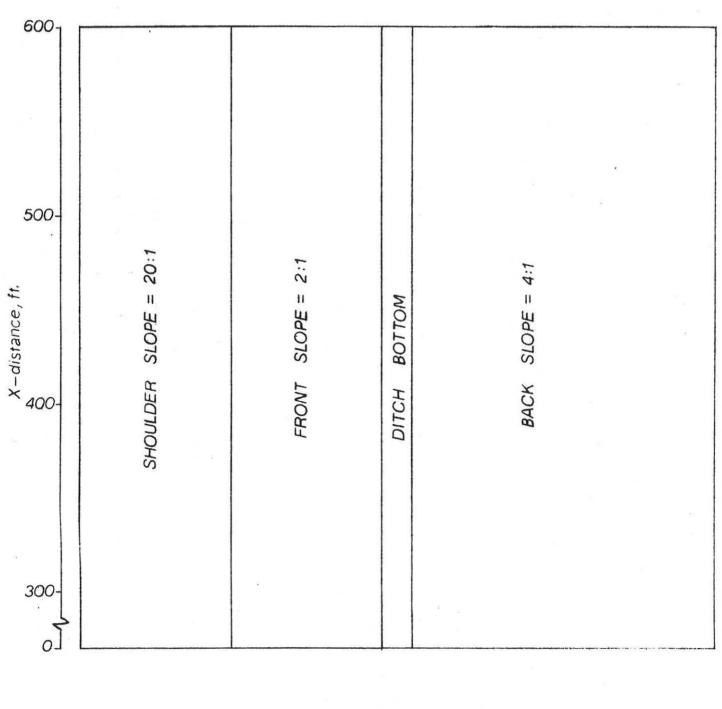
```
LAMBDAF =
              0.500
LAMBDAR =
              0.500
              3.000
                     INCHES
OMEGAF
OMEGAR
         =
              4.000
                     INCHES
             46.500 INCHES
TS
00
            32500 . 0 LB- IN/RAD
         =
           98500.0 LB-IN/RAD
0.070 POLL STEEP COEFF.
PF
         =
KRS
AKPC
         =
           300.000 LB/IN
           2.000 LB/IN3
-4.000 IN
AKRCP
OMEGRO
         =
AKPE
         = 300.000 LB/IN
              2.000 LB/IN3
AKREP
         -
OMEGRE
              4.500 IN
```

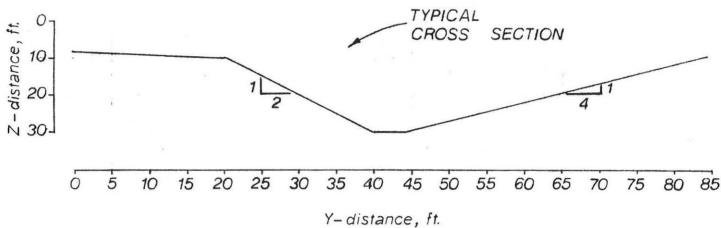
INERTIAL DATA

```
MS
         8.4402 LB.-SEC.**2/IN
MUF
     =
         0.5507
MUR
         0.8952
IX
         6200.0 LB.-SEC.**2-IN
        34400.0
     =
IZ
     =
       36000.0
                        . .
IXZ
                        . .
     =
       -192.000
IR
         600.00
G
       386.400 IN/SEC. ** 2
```

THE STEER ING DEG DEG DEG DEG SEC DEG SEC			(4)	W-1-12					
SEC. INPUT OPEN	TIME	STEER ING	SPRUNG	MASS CG ACCE	Fl •	ANG	UI AP VELOCIT	IFS	FORWARD
Dec		INPUT				71110			
0,000 3,24	000		LONG.		VERT.	ROL1	PITCH	YAW	
0300	1-0200								
1,0400 3,47							2.30		
0.0500 3.47									
1,0600						7.52			
1.0700 3.58		3.53				10.32			
1.0800 3.62									
1.0900 3.65									
1.1000 3.68						19.12	-2.98		
1.1100									
1.1200									
1.1300 3.73 0.082 0.305 0.150 35.92 -4.82 6.48 105.08 1.1500 3.73 0.082 0.282 0.194 38.25 -5.03 6.84 106.08 1.1500 3.73 0.083 0.276 0.242 40.60 -5.17 7.15 105.11 1.1600 3.73 0.032 0.231 0.214 42.55 -5.17 7.47 105.13 1.1700 3.72 0.016 0.139 0.149 44.05 -5.17 7.47 105.13 1.1700 3.77 0.013 0.104 0.057 44.59 -4.37 7.64 105.15 1.1800 3.71 0.013 0.104 0.057 44.59 -4.37 7.65 105.16 1.1900 3.70 0.023 0.118 -0.030 43.67 -3.49 7.64 105.17 1.2000 3.66 0.023 0.118 -0.030 43.67 -3.49 7.64 105.17 1.2000 3.66 0.023 0.118 -0.030 43.67 -3.49 7.64 105.17 1.2200 3.66 0.023 0.116 -0.297 3.66 0.033 7.60 1.2230 3.66 -0.542 -0.764 -1.455 2.200 3.66 0.024 0.150 -0.297 3.60 1.2230 3.65 -0.542 -0.764 -1.455 2.200 3.66 0.023 0.18 -0.297 3.250 1.2230 3.65 -0.542 -0.764 -1.455 2.200 3.66 0.023 0.18 0.164 0.023 0.18 0.164 0.035 7.60 1.2230 3.65 -0.542 -0.764 -1.455 1.2230 3.66 -1.577 1.2290 3.10 1.2290 3.80 -1.142 0.128 0.									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								The same and the s	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							-5.03		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
1-1800 3.71 0.013 0.104 0.057 44.59 -4.37 7.65 105.16 1.1900 3.69 0.038 0.118 -0.030 43.67 -3.49 7.64 105.17 1.2000 3.66 0.036 0.146 -0.087 41.31 -2.38 7.64 105.17 1.2100 3.66 0.015 0.009 -1.140 7.767 105.20 1.2200 3.66 0.015 0.009 -1.407 26.43 2.50 7.50 105.22 1.2330 3.66 -0.542 -0.784 -1.455 14.16 6.53 7.04 105.19 1.2430 3.64 -1.572 -2.709 -4.609 1.2530 3.66 -2.055 7.3250 7.3		3.73			0.214				105.13
1.900		3.72						7.64	105.15
1.2000		3.71				44.59	-4.37	7.65	105.16
							-3.49	7.64	
				0.146	-0.087	41.31	-2.38	7.64	105.18
1.2330					-0.295	37.60	-1.07	7.67	
1.2330	1.2200	3.66			-1.400	26.43	2.50	7.58	105.22
1.22430 3.664 -1.572 -2.769 -3.2550 -7.08 15.30 3.29 100.89 1.25230 3.669 -2.527 7.7 -4.519 -3.2550 -6.218 -5.825 34.47 -1.91 100.376 1.2729 3.71 -1.690 -1.8568 -1.830 -1.26.27 60.03 -10.09 103.76 1.2829 3.75 -1.460 -1.556 -1.830 -1.252.40 67.50 -10.56 102.71 1.3029 3.85 -0.722 -0.656 -1.060 -195.65 75.60 -10.64 102.31 1.3129 3.99 -0.013 -0.157 -0.437 -214.39 77.51 -7.42 101.85 1.3429 4.06 -0.014 -0.075 -0.317 -214.39 77.51 -7.42 101.85 1.3459 4.14 -0.025 -0.065 -0.249 -217.61 77.66 -5.75 101.83 1.3709 4.33 -0.065 -0.140 -0.092 -218.70 77.67 -2.24 101.75 1.3809 4.26 -0.055	1.2330	3.65	-0.543	-0.784	-1.455		6.53		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2430	3.64	-1.572	-2.709	-4.609	-7.08		3.29	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2530	3.66	-2.055	-3.250	-6.218	-58, 25			
1 2829 3 .71	1.2629	3.69	-2.527 17	-4.519 25		39 -102.60			
1.28299 3.850 -1.460 -1.556 -1.216 -1.509 -175.38 72.96 -10.56 102.71 1.3029 3.85 -0.722 -0.656 -1.509 -175.38 72.96 -10.08 102.31 1.3129 3.92 -0.310 -0.300 -0.817 -208.23 76.93 -8.88 101.89 1.3229 3.99 -0.013 -0.157 -0.437 -214.39 77.51 -7.42 101.85 1.3329 4.06 -0.014 -0.095 -0.317 -216.61 77.66 -5.75 101.83 1.3429 4.14 -0.025 -0.065 -0.249 -217.81 77.66 -5.75 101.83 1.3429 4.19 -0.041 -0.095 -0.317 -216.61 77.66 -5.75 101.83 1.3599 4.26 -0.055 -0.140 -0.092 -218.70 77.52 0.19 101.67 1.3709 4.33 -0.065 0.506 -2.029 -210.36 71.94 1.26 101.67 1.3709 4.50 0.065 0.5	1.2729	3.71	-1.698 ""	-1.868		-126.27			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2829	3.75		-1.558					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2929	3.80	-1.143	-1.216			72.96		
1.3129	1.3029					-195.65	75.60		
1.3229			-0.310			-208-23	76.93		
1.3329	1.3229					-214.39	77.51		101.85
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.3329						77-66		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							77.67		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.3599						77 52		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							71 - 94		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.30	0-0181						A STATE OF THE PARTY OF THE PAR
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.3909		0-153						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-152 61			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.007 07	-3.001	20 136 91			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.303 0.2		-3.339	2,9 -120.94			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-0.029						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.57	-0.336				-1.36		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	The state of the s		-0.000						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
1.4909 4.49 -0.062 -0.161 -0.120 -51.84 -17.07 -12.93 100.53 6 1.5009 4.46 -0.061 -0.199 -0.102 -48.90 -17.70 -12.57 100.51 1.5109 4.41 -0.063 -0.195 -0.111 -46.23 -18.13 -11.97 100.49									
1.5009 4.46 -0.061 -0.199 -0.102 -48.90 -17.70 -12.57 100.51 1.5109 4.41 -0.063 -0.195 -0.111 -46.23 -18.13 -11.97 100.49									100.54
1.5109 4.41 -0.063 -0.195 -0.111 -46.23 -18.13 -11.97 100.49					The second secon				100.53 %
1.5209 4.36 -0.067 -0.186 -0.118 -43.18 -18.21 -11.29 100.47									
	1.5209	4.36	-0.067	-0.186	-0.118	-43.18	-18.21	-11.29	100.47

100000000000000000000000000000000000000								4
TIME	2012/01/02		1272 2	SPRUNG A				
SEC.		TION (INCH			ATION (DEG	REES)	VELOCITY	(FT /SEC.)
	X ¹	Y.	Z •	PHI	THETA	PSI	LAT.	VERT.
1.0200	1477.35	514.14	189.15	10.56	-3.78	14.91	4.95	1.26
1.0300	1489.30	517.91	190.22	10.39	-3.75	14.94	4.98	1.15
1.0400	1501.26	521.69	191.28	10.30	-3.74	14.98	5.01	0.98
1.0500	1513.21	525.49	192.31	10.29	-3.75	15.01	5.04	0.79
1.0600	1525.17	529.30	193.32	10.36	-3.77	15.04	5.07	0.64
1.0700	1537.13	533.12	194.33	10.49	-3.80	15.08	5.08	0.54
1.0800	1549.09	536.96	195.34	10.66	-3.83	15.12	5.08	0.46
1.0900	1561.05	540.80	196.35	10.88	-3.87	15.16	5.08	0.38
1.1000	1573.01	544.66	197.36	11.13	-3.91	15.21	5.07	0.31
1.1100	1584.97	548.53	198.37	11.41	-3.96	15.25	5.06	0.23
1.1200	1596.93	552.41	199.39	11.73	-4.01	15.31	5.04	0.15
1.1300	1608.89	556.30	200.41	12.07	-4.07	15.36	5.02	0.07
1.1400	1620.85	560.20	201.45	12.44	-4.13	15.42	5.00	0.01
1.1500		564.11	202.49	12.83	-4.19	15.48	4.96	-0.05
1.1600	1644.75	568.03	203.54	13.24	-4.25	15.54	4.91	-0.11
1.1700	1656.72	571.95	204.60	13.67	-4.32	15.61	4.83	-0.18
1.1800	1668.68	575.89	205.67	14.11	-4.38	15.67	4.73	-0.27
1.1900	1680.63	579.82	206.74	14.55	-4.43	15.74	4.62	-0.37
1.2000	1692.59	583.76	207.81	14.97	-4.48	15.81	4.52	-0.48
1.2100	1704.54	587.71	208.88	15.36	-4.51	15.88		
1.2200	1716.50	591.67	209.93	15.69			4.42	-0.59
1.2330	1732.03	596.83	211.25		-4.52	15.96	4.32	-0.89
1.2430	1743.98			15.94	-4.49	16.06	4.14	-1.08
		600.79	212.21	15.99	-4.40	16.14	3.59	-1.56
1.2530	1755.89	604.71	213.02	15.68	-4.17	16.20	2.87	-2.77
1.2629	1767.76	608.57	213.60	14.88	-3.74	16.25	2.10	-3.42
1.2729	1779.59	612.35	214.01	13.72	-3.17	16.27	1.57	-3.35
1.2829	1791.38	616.05	214.27	12.32	-2.52	16.29	1.29	-3.19
1.2929	1803.13	619.71	214.42	10.68	-1.81	16.29	1.08	-2.73
1.3029	1814.85	623.31	214.47	8.84	-1.06	16.28	1.04	-1.89
1.3129	1826.56	626.88	214.47	6.81	-0.29	16.25	1.11	-0.82
1.3229	1838.25	630.43	214.44	4.69	0.49	16.21	1.19	0.39
1.3329	1849.95	633.97	214.39	2.54	1.26	16.15	1.23	1.69
1.3429		637.50	214.32	0.36	2.04	16.09	1.20	3.03
1.3499	1869.85	639.96	214.27	-1.17	2.58	16.04	1.13	3.98
1.3599	1881.55	643.47	214.19	-3.36	3.35	15.96	0.93	5.35
1.3709	1894.42	647.31	214.09	-5.74	4.18	15.86	0.69	6.59
1.3809	1906.11	650.80	213.95	-7.77	4.83	15.76	0.58	7.18
1.3909	1917.79	654.30	213.71	-9.58	5.32	15.63	0.70	7.26
1.4009	1929.45	657.80	213.39	-11.19	5.66	15.48	0.74	7.27
1.4109	1941.08	661.27	212.96	-12.61	5.87	15.33	0.78	6.43
1.4209	1952.68	664.71	212.41	-13.82	5.95	15.21	0.89	6.06
1.4309	1964.27	668.16	211.79	-14.92	5.95	15.10	1.17	5.42
1.4409	1975.85	671.58	211.06	-15.82	5.84	15.01	1.39	4.22
1.4509	1987.41	674.98	210.24	-16.53	5.66	14.94	1.56	3.53
1.4609	1998.96	678.37	209.40	-17.19	5.46	14.88	1.74	3.19
1.4709	2010.52	681.77	208.55	-17.81	5.26	14.81	1.88	2.87
1.4809	2022.08	685.15	207.70	-18.39	5.06	14.75	2.02	2.55
1.4909	2033.63	688.53	206.85	-18.94	4.86	14.69	2.18	2.22
1.5009	2045.19	691.90	205.99	-19.45	4.65	14.64	2.32	1.90
1.5109	2056.74	695.26	205.14	-19.93				
1.5209					4.44	14.59	2.46	1.57
	2068.30	698.62	204.28	-20.38	4.23	14.55	2.59	1.24


APPENDIX


D. HVOSM TERRAIN LAYOUT (TYPICAL)

UNL-NOR GUARDRAIL STUDY HVOSM SIMULATIONS ON EMPLANAMENT FILLS 60 MPH AND 10 DEG ENCROACHMENT (RUN NO. 5)

INPUT PRESET IN SUBROUTINE STD

10.818
131.000 0.500 3.000 3.500 55.000 0.001 266000.000 192.000 0.500 4.000 3.900 50.000 0.001 61900.000 46.500 0.070 1098.000 3.000 10.000 8.276 2900.000 1.780 0.300 1.000 3900.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
192.000
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-34.480 0.0 4.000 -5.983 -16.500 3.138 -5.000 5.000 1.000
-5.000 5.000 1.000 PHIC(I),I=1.11
PHIC(I), I=1,11
-3.350 -2.555 -1.600 -1.500 -0.550 -0.500 -0.500 -0.500
492.000 600.000 0.400 5000.000 0.075 1.500
4 4000.000 0.001 0.250
XVP(I),YVP(I),ZVP(I),I=1.4
81.517
-117.483 39.000 3.138
-117.483 -39.000 A.138
300.000 2.000 -3.000 300.000 2.000 3.000
300.000 2.000 -4.000 300.000 2.000 4.000
INPUT READ BY CALSVA
THEOT READ BY CALSVA
0.0 6.80 0.005 0.0 0.01 70.0 0.0 0.0 -1.0 1
8.4402 0.5507 0.8952 386.4 5200.0 34400.0 35000.0 -192.0 600.0 3
100.0 0.50 3.0 3.5 30.0 0.001 93500.0 5 105.0 0.50 4.0 3.9 45.0 0.001 32500.0 46.5 0.070 6
1098.0 3.0 10.0 3.276 2900.0 1.78 0.2 1.0 3900.0 7 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 9.0
264.0 168.0 1056.0 0.0 0.0 9
2.0 6.0 1.0
XGP(I,1),YGP(I,J),ZGP(I,J),I=1, 2 J=1, 6
0.0 0.0 9.000 20.000 10.000 40.000 20.000 44.000 20.000 34.000 10.0
104-700
104.000 10.000 600.000 0.0 9.000 20.000 10.000 40.000 20.000 44.000 20.000 84.000 10.0
600.000 0.0 9.000 20.000 10.000 40.000 20.000 44.000 20.000 84.000 10.0
104.000 10.000
H-
XGP(I,1),AMUXY(I,J),I=1, 2 J=1, 0 NMUXY = 1
0.0 0.500 0.200 0.200 0.200 0.200 0.200 0.200 600.000 0.200 0.200 0.200 0.200 0.200 0.200
300.0 2.0 -3.0 300.0 2.0 5.00
300.0 2.0 -4.0 300.0 2.0 4.50
9999

APPENDIX

E. HVOSM EMBANKMENT SIMULATION RESULTS

50 moh - 72 degrees
HVOSM Simulations on Emparament Fills

	Γ		Γ		1705)	AC	CE	- 1	E R	AT	10	NS		1		Heading	Taury
	Front Slope	1	Ditch Conf.	Bock Slope			Yert.			Lat.	Vert.		Max. Roll (deg)	Distance Airborne (ft)	Max. Speed (mph)	Ditch Contact (deg)	Prob.
1	3:1	10	A	0.1	0.3	0.2	1.8	0.3	100	70.7		12.24 22.0	12237	170	(//// //	10097	
2 3		30			1.4	0.4	3.2	0.6									
5	3:1	10 20	A	4:1	1.1 2.5 3.9	0.9	2.1 4.8 5.8	0.4	0.2	D.Z 0.1 0.1	1.5 1.3 1.3	0.3			X 40		(n = n :=
6789	4:1	30 10 20 30	A	0:1	0.1	0.4 0.2 0.2	1.4 1.9 2.4	0.3	0.3	0.1	,,,,	0,2				-	
10 11 12	4:1	10 20 30	A	4:1	0.2 1.5	0.3	1.7	0.3	0.1	0.1 0.2 0.1	1.0	0.2			1-	·	
13 14 15	6:1	10 20 30	A	0:1	0,1	0.4	1.2	0.2							*		
16 17 18	6:1	10 20 30	A	4:1 Y	1.0	0,9	2.5	0.5	0.1	0.3	1.4	0.2					
				N			-										

50 mph. - 15 degrees

		_			VO51													
			,,			AC	CE									Heading	Injury	
		Fill	Ditch		Froi		e to D	itch			Bock S			Distance		Heading Ditch	Prob.	
No.	Slope	Ht. (ft)	Cont.	5/ope	Long.	Lat.	Yert.	SI	Long.	Lat.	Vert.	51	Roll (deg)	Airborne (ft)	Speed (mph)	Contact (deg)	(%)	
19	3:1	10	_ A	0:1	0.2	0.3	2.9	0.5							= - 9/4			-
20		20			0.1.	0.4	3.0.	0.5								2.5	1	
21	1	30	1	1	0.5	2.0	4.5	0.8	-	ļ				-				
22		10	A	4:1	0.5	1.3	2.2	0.5	0.1	0.2	3.5	0.6	1			8.99		
23		20		1 1	0.6	1.3	3.4	0.6	0.3	0.4	2.9	0,5						
24	1.1	30	1	1	2.5	1.3	3.9	0.8	1.7	1.8	4.7	0.9		-				
25		10	A	0:1	0.1.	0.5	1.7	0,3										
26		30	1		0.7	0.2	2.2	0.4										
28		10	A	4:1	1.2	1.0	2.9	0.6	0.2	0.5	2.1	0.4						
29		20	1 1	1,1	1.2	1.3	4.6	0.8	0.3	0.4	1.7	0.3						
30	Ť	30	1	Y	3.6	1.7	6.4	1.2	0.2	0.3	3.5	0.6						
31	6:1	10	A	0:1	0.1	0.3	1.0	0.2										
32	4 1	20										ļ						
33		30	<u> </u>	1					ļ									
34	6:1	10	A	4:1	0.8	1.4	3.3	0.6										
35		20							il									-
36	1	30																
								ŀ										
						1												
															, n			
																		73

50 mph - 25 degrees HVOSM Simulations on Emparament Fills

		<i>-11</i>	Ditah			AC	CE		E R	AT	10. Bock Si	NS	41		14.04	Hoading	Injury
	Slope	Ht. (ft)	Ditch Conf.	Slope		Lot.	Yert.		Long.				Roll (deg)	Distance Airbome (ft)		Ditch Contact (deg)	Prot.
37 38 39		10 20 30	A	0:1	0.5	0.5	2.4 3.6 3.9	0.4					+28 -10 +28 -5 +28 -21 +28 -21 +28 -21 +28		52.5 55.2 57.3	+25 +34 +44	
40 41	3:1	10 20 30	A	4:1	2.0 2.3 3.9	1.8 1.3 1.8	4.9	0.8	0.2	0.2	1.7 1.9 3.5	0.3 0.4 0.6	+28 -21 +28 -17 +28 -15		52.5 55.2 57.3	+25.	1.4.24
43 44 45	4:1	10. 20 30	A	0:1	0.5 0.7 1.1	0.7 0.3 0.4	2.3 2.8 4.5	0.4				0.4	-15 +19 -11 +19 -1 +19 -20 +19 -13 +19 -28		52.5 54.5 55.9	+25 +41 +56	
46 47 48	ļ.	10 20 30	A	4:1	1.7 3.0 4.0	1.3	3.7 4.8 6.3	0.8	0.2 0.2 0.1	0.2 0.3 0.4	2.4 2.2 3.7	0.4	-20 +19 -13 +19 -28		52.5 54.5 55.9	+25 +41 +56	
49 50 51	6:1	10 20 30	A	0:1	0.1	0.3	1.4	0.2				02	+13		52.5	+3/	
52 53 54	6:1	10 20 30	A	4 :1 Y	1.6	1.2	2.8	0.6	0.5	0.1	1.6	0.3	+13		52.5	+31	
																w/	

VOSM Simulations on Empartment 5115

				//	1105,	(1)	MUICI	10115	N En	Dankn,	ent 1	-1115					
			,,			AC	CE	1 2	R	AT	10.	NS				Heading	Injury
1	Front	1		1	,		e to D				BOCK S.		Mox.	Distance		Ditch	Prob.
No.	Slope	(ft)	Conf.	Slope	20ng.	Lot. (G)	Vert.	SI	Long.	Lat.	Vert.	52	Roll (dea)	Airborne (ft)	(mph)	Contact (deg)	(70)
55	3:1	10	A	0.1	0.3	0.1	17	0.3					(deg) +26 -11	1307	62.0	+17	
56		20			1.1	0.4	2.8	0.5					-11 +26 -5 +26 -21 +26 -14 +29 +19 -19 +19 -18 +19 -19 -19 -19 -16 -16 -16 -17 -18 -19 -19 -19 -19 -19 -19 -19 -19		62.7	+36	
57		30	<u> </u>	1 7	1.5	0.4	3.4	0.6					+26		62.1	+51	
58	3:1	10	A_	4:1	09	0.5	.20	0,4	0.1	0.3	1.9	0.3	-21		62.0	+17	
59		20			2.4	1.4	4.5	0.9	1.5	1.60	3.7	0.7	-14 +26		62.7	+36	
60	4:1	10	A	0:1	3.1. 0.1	0.2	2.2	0.4	15	1.7	2.9	0.6	+12	 -	62.7	+51	
62	7.1	20	.//	0.2	0.2	0.2	2.6	0,4					+/9		64.1	+/3	
63	V	30	1	r	0.5	0.2	2.2	0.4					+19		66.1	+33	
64	4:1	10	A	4:1	0.9	1.0	2.4	0.5	0.3	0.3	1.8	0.3	-18		62.0	+18	
65	1	20		1	0.6	1.1	2.2	0.5	0.1	0.2	3.4	0.6	+19		64.1	+13	
66	1	30	Y	Y	2.4	1.4	5.0	0.9	0.8	1.5	3.7	0.7	-16	-	66.1	+32	
67	6:1	10	A	0:1	0.0	0.3	1.0	0.2					-6		62.0	+22	
69	1 1	20		1								1 440	1 122	-			
70	6:1	10	A	4:1	0.9	0.7	2.7	0.5	0.3	0.6	1.8	0.3	+12 -21		62.0	+21	
171		20		7 2	0.)	0.7	2.7	0.0	0.5	0.6	1.0	0.3	-21		02.0	1.21	
72	l Y	30	İ	Y													
	+				l												
	1				İ			İ									
						İ											
							į									İ	
					-												
																}	
								-									

HVOSM Simulations on Embertured File

Enad!				Commence of the last of the la		CE		E R	7	10.	140				Hooding	THOMV
Slope		Ditch Conf.			Lot.	yert.	stch SI	Dito Long. (6)	7	Pock Si Vert.		Roll (deg)	Distance Airborne (ft)		Ditch Contact (dea)	Prob. (%)
3:1	10 20	A	0:1	0.3	0.6	1.8	0.3			; — ; — ;		+26 -10 +22 -06 +22		61.8	+34	12 20 24
3.1	10 20	A	4.1	0.5	0.8	2.2	0.4	0.1	0.2	1.4	0.2	+26 -18 +26 -14 +22		61.8	+13	16 32 52
4:1	10 20	A	0:1	0.1	0.1	1.5 2.2	0.3					-09 +20 -07		62.2 64.1	+21 +16	12
4:1	10	A	4 1 Y	1.1	1.0 1.5 2.0	2.8 2.9 4.0	0.5	0.1 0.0	0.3 0.5 0.3	1.8 3.5 4.3	0.3 0.6 0.8	+20		62.2 64.1	+21 +16	20 24 32
6:1	10	A	2:1 Y	5.0 0.1	03 0./	0.8 2.0	0.2					+12 -08 +13 -06		62.2 63.3	+20 +37	8 12
61	10 .:0	A	41	0.7	0.8 0.9	2.0 3.5	0.4	0.2	0.5 1.2	2.0	0.4	+12 -22 +12 -17		62.2 63.4	+17 +36	16 28
*				¥									31			
	3:1	3:1 10 20 3:1 10 20 30 3:1 10 20 30 4:1 10 20 30 4:1 10 20 30 4:1 10 20 30 4:1 10 20 30 4:1 10 20 30 4:1 10 20 30 4:1 10 20 30 4:1 10 20 30 4:1 10 20 30 4:1 10 20 30 4:1 10 20 30 4:1 10 20 30 4:1 10 20 30 4:1 10 20 30 4:1 10 20 30 4:1 10 20 30 4:1 10 30 4:1 r>4:1 10 30 30 4:1 10 30 30 30 30 30 30 30 30 30 3	3:1 10 A 20 3:1 10 A 20 30 A 20 30 A 4:1 10 A 20 30 A 4:1 10 A 20 30 A 4:1 10 A 20 A 30 A 4:1 10 A 20 A 30 A	3:1 10 A 0:1 20 30 3:1 10 A 4:1 20 30 4:1 10 A 0:1 20 30 4:1 10 A 0:1 20 30 4:1 10 A 4:1 20 30 4:1 10 A 2:1 20 30 4:1 10 A 2:1	3:1 10 A 0:1 0.3 20 1 1.0 3.2 3.1 10 A 4:1 0.5 20 2 2.3 3.4 4:1 10 A 0:1 0.1 20 0 0.3 30 0 0 0.2 4:1 10 A 4:1 1.1 20 1 0.2 4:1 10 A 0:1 0.2 4:1 10 A 0:1 0.2 0.2 4:1 10 A 0:1 0.2 0.2 4:1 10 A 0:1 0.2 0.2 4:1 10 A 0:1 0.2 1.6 1.7 1.9	3:1 10 A 0:1 0.3 0.6 20	(G) (G) (G) (G) 3:1 10 A 0:1 0.3 0.6 1.8 20 1.0 0.3 3.1 3.1 10 A 4:1 0.5 0.8 2.2 20 2.3 1.4 4.0 3.4 1.2 5.1 4:1 10 A 0:1 0.1 0.1 1.5 20 0.3 0.8 2.2 4:1 10 A 4:1 1.1 1.0 28 4:1 10 A 4:1 1.1 1.0 28 4:1 10 A 0:1 0.1 0.2 4:1 10 A 4:1 1.1 1.0 28 5:1 0.2 0.3 0.8 6:1 10 A 0:1 0.1 0.3 0.8 20 0.2 0.7 2.6 4:1 10 A 0:1 0.2 0.3 0.8 20 0.1 0.1 0.1 0.1 0.8 30 1 0 0.1 0.1 0.1 0.8 30 1 0 0.1 0.1 0.1 0.8 30 1 0 0.1 0.1 0.8 30 1 0 0.1 0.1 0.8 30 1 0 0.1 0.1 0.8 30 1 0 0.1 0.1 0.1 0.8 4:1 10 0 0.1 0.1 0.8 4:1 10 0 0.1 0.1 0.8 4:1 10 0 0.1 0.1 0.8 4:1 10 0 0.1 0.1 0.8 4:1 10 0 0.1 0.1 0.8 4:1 10 0 0.1 0.1 0.8 4:1 10 0 0.1 0.1 0.8 4:1 10 0 0.1 0.1 0.8 4:1 10 0 0.1 0.1 0.8 4:1 10 0 0.1 0.1 0.8 4:1 10 0 0.1 0.1 0.8 4:1 10 0 0.1 0.1 0.8 4:1 10 0 0.1 0.1 0.8 4:1 10 0 0.1 0.1 0.8 4:1 0.2 0.8 4:1 0.2 0.8 4:1 0.9 0.9 3.5	3:1 10 A 0:1 0.3 0.6 1.8 0.3 20	(6) (6) (6) (6) (6) (6) (6) (6) (6) (6)	(6) (6) (6) (6) (6) (6) (6) (6) (6) (6)	(a) (b) (b) (c) (c) (c) (d) (d) (d)	3:1 10 A 0:1 0.3 0.6 1.8 0.3 — — — — — — — — — — — — — — — — — — —	(a) (b) (b) (c) (c) (c) (c) (c) (d) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de) (de)	(a) (b) (b) (c) (c) (c) (d) (d) (de) (ft) (ft)	(a) (b) (b) (c) (c) (c) (d) (de) (ft) (mph) (des) (ft) (ft) (mph) (des) (ft) (ft) (mph) (des) (ft) (ft) (ft) (des) (ft) (ft) (ft) (des) (ft) (ft) (ft) (des) (ft) (ft) (ft) (des) (ft) (ft) (ft) (ft) (des) (ft) (ft) (ft) (ft) (des) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft	(a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b

HVOSM Simulations on Embarkment Fills

				//	100			10115	XI ZA	Dann	nent 1	-1115					
						AC	-		ER			NS				Heading	Taure
Run	Front	FILI	Ditch				e to D				Bock Si		Mox.	Distance		Ditch	Donh
No.	Slope	Ht.	Conf.	Slope	Long.	Lot.	Vert.	SI	Long.	Lat.	Vert.	SI	Roll	Airborne		Contact	100.
		(ft)	-		(6)	(G)	(G)	0.4	(6)	(G)	(4)		(deg)	(ft)	(mph)	Contact (deg)	(%)
73	3:1	10	A	0:1	0.5	1.0	2.0	0.4					-9		62.0	+/4	
_74		20			0.9	0.5	2.9	0.5					-8 +Z8		64.1	+30	
75	1	30	1 1	4	1.6	0.3	4./	0.7					-5 +Z8	-	64.1	+46	
16	3:1	10	A	4:1	0.8	1.6	2.8	0.6	0.2	0.3	2.9	0.5	-22 +28		.62.0	+/4	
77	1	20		<u> </u>	2.5	1.8	4.6	0.9	0.8	1.2	3.2	0.6	-16 +28		64.1	+30	
78	1.1	30	1	1	4.0	1.6	6.2	1.2	0.1	0.3	2.1	0.4	+19	-	64.1	+46	
79	4:1.	10	A	0:1	0.1	0.6	2.2	0.4					-9		62.0	+23	
80		20	1 1		0.1	0.8	3.4	0.5					-8 +19		64.8	+37	
81 82	4:1	30	1	4:1	1,0	0.3	3.0	0.6	0.1	0.2	1.7	0.3	(deg) +28 -9 +28 -5 +28 -5 +28 -16 +28 -16 +28 -16 +29 +39 -19 -19 -19 -19 -19 -19 -19 -19 -19 -1	 	62.0	+22	
83	7.2	1000	1	4.1	1.4	1.5	5.1	1.0	1	1.1	3.6	0.7	+19			+36	
84	ļ	30	-	\ \	3.0	1.4	5.8	1.1	1.1	1.5	4.5	0.9	+19		64.8	+45	
85	6:1	10	A	0:1	0.1	0.3	1.0	0.2	7.7	7.0	7.0	0.7	+13		62.0	+19	
86	1	20	l 'i	1		0.5	1.0	عددا					-6		WZ.0	1 //	
87	+	30	1 🔻	1													
88	6:1	10	A	4:1	1.0	1.3	2.7	0.5	0.2	0.3	1.9	0.3	+13		62.0	+20	
89		20	1 1									0.5	,,		•		
90	1	30	1 1	Y									12				
											-						
									İ								
																-	
					-												

朱

60 mph - 25 degrees

				1	1405		mulat	ions_	on En	The state of the s		F1/15					
Run	Frant	Fill	Ditch	Bock	From	A C	CE	- 4	Dito	AT		NS	Mox.	Distance	Max.	Hooding	Injury
	Slope	Ht. (ft)		Slope	Long.	10t. (G)	Yert.	SI	Long.		Vert.		Roll (deg)	Airborne (ft)	Speed (mph)	Ditch Contact (deg)	(%)
91	3.1	10 20	A	0:1	1.3.	1.9	4.2	.0.8			<u> </u>		+29 -4 +29 -7 +29		62.4	+24	
93	3:1	30	A	4.1	2.0° 1.3	1.9	4.5	0.8	0.8	0.5	5.0	0.8	-8 +29 -21	-	62.0	+42	
95 96 97	4:1	20 30 10	I A	0:1	5.0 0.2	2.9	7.0	*1.2 1.5 0.6	2.4	2.0	6.6	1.2	+29 -16 +20		62.0	+42	
98 99		20 30	1	_\display	0.2	0.9	4.5	0.8					+20 -8 +20 -8		64.1	+33	
101	4:1	10 20	A	4:1	2.5	2.9	5.2 5.3	1.1	0.5	0.8	2.8	0.5	+20 -20 +20 +20 -25 +20 -25 +20 -19 +20 -18 +37		62.0	+26	
103	6:1	30 10 20	A	0.1	0.1	0,3	5.1 2.0	0.3	0.6	0.3	4.4	0.8	-18 +13 -7		62.0	+31	
105	6:1	30 10 20	A	4:1	1.9	1.6	4.7	0.9	0.6	0.8	2.9	0.5	+13		62.0	+30	
123	1	30	ļ ļ	Ý.													
									8								
														,			
										-							

*

70 mph - 7/2 degrees

**********				17	(VOS)	M 51	mulat	ions	on En	bankn	ent i	F1/15					
						AC	CE				10.					Hooding	Injury
				Bock		nt Slop			1		Bock Si		Mox.	Distance		Ditch	Prob.
No.	Slope	Ht. (Ht)	Cont.	Slope	Long. (6)	10t. (G)	Yert.	SI	Long.	Lat.	Vert.	SI	Roll (deg)	Airborne (ft)	Speed (mph)	Contact (deg)	(%)
109	3.1	10	A	0.1	0.2	0.2	1.9	0.3		-		1	+26 -11		71.6	+15	+
110		20			1.0	0.3	3.4	0.6		1			-11 +26 +22 -5 +24 -15 +26 -15 +26 -15 +26 -120 -8 -120 -120 -120 -120 -120 -120		72.3	*33	-
///		30	<u> </u>	1.0	1.5	0.1	3.6	0.6	2 /			0.2	+26		72.3	+47	
112	3:1	10	A	4:1	0.9	0.8	2.5	0.5	0.1	0.6	1.8	0.3	-21 +26		71.6	+15	1
113		20			2.4	1.2	6.9	0.8	0.2	1.5	3.4	0.7	+26		72.3 72.3	+33	
115	4:1	10	A	0.1	0.1	0,4	2.6	0.4	0.2			0.7	120		72.3	+18	
116	1	20			0.1	0.7	2.2	0.4					+20		73.0	+9	
117	<u> </u>	30	L Y	V	0.1	0.6	2.7	0.5					+20 -9		74.3	+9	
118	4:1	10	À	41	1.1	1.0	2.6	0.5	0.3	0.4	2.0	0.3	+20 -19		71.6	+18	1
119		20			0.4	1.1	2.5	0.5	0.2	0.1	3.5	0.6	-27 +20		73.0	+9	-
120	1	30) Ý	1	0.9	2.1	4.8	0.9	0.0	0.5	5.0	0.8	-26 +12 -8	-	73.6	+9	
121	6:1	10	A	01	0.0	0.1	0.7	0.1					-8		71.6	+//	
122		20 30		V			96										l
24	61	12	A	4:1	0,4	0.8	2.0	0.4	0.0	0.3	1.6	0.3	+12		71.6	+//	
25		20	,														-
120	1	30	Y	T			-		-								
					l												
													7		Э.		1.

*

10 mph -15 degrees
HVOSM Simulations on Embankment Fills

					100)	, .,	MUICILL		UI En		The same of the same of			1			
						AC	CE		R	AT		NS				Heading	Injury
			Ditch			nt Slop	-			THE RESERVE OF THE PERSON NAMED IN	Bock S		Mox.	Distance		Ditch	Pmb.
No.	Slope	Ht. (ft)	Cont.	5/ope	Long.	Lat.	Vert.	SI	Long.	Lat.	Vert.	SI	Roll	Airborne	Speed	Contact (deg)	(70)
			1		(6)	(G)	(G)		163	(G)	(G)		(deg) +31 -9	(ft)	(mph)		170)
127	.3.1	10	A	0.1	0.2	0.5	2.9	0.5					- 9		71.6	+17	t
128		20			1.0	0.5	3.7	0.6				. —	+31 -8 +31 -6		73.6	+28	
129	<u> </u>	30	ļ	<u> </u>	1.4	0.5	4.0	0.7					-6		74.3	+37	
130	3:1	10	,A	4.1	1.7	2,5	3.9	0.9	0.2	0.7	2.9	0.5	+31	1	71.4	+16	
131		20			2.4	1.7	5.2	1.0	0.5	0.6	2.7	0.5	- 18		73.6	+28	<u>-</u>
132	JY	: زر	I Y	¥	3.7	1.9	5.9	1.2	1.9	1.9	6.4	1.2	-21		74.3	+37	
133	4.1	10	A	0:1	0.1	0.9	3.5	0.6					+20	1	71.6	+21	
134		20			0.6	0.3	2.8	0.5					-8		73.0	+33	
135		30	<u> </u>	L	0.9	0.1	3.4	0.6					+ 13/10/20/820 620 + 13/10/20/820 620 + 12/10/20/20/20/20/20/20/20/20/20/20/20/20/20		73.0	+44	
136	41	10	A	4:1	1.3	1.5	3.4	0.7	0.1	0.5	2.3	0.4	-14		71.6	+19	- 1
127		20			2.5	1.5	5.3	1.0	1.1	1.2	3.8	0.7	-17	İ	73.0	+33	4
138	<u>Y</u>	30	Y	Y	2.8	1.3	5.9	_L. I	2.2	1.8	6.2	1./	-15	!	73.0	+44	
139		15	A	0:1	0.1	0.4	1.5	0.3					+13		72.3	+20	
140		25															
141		30	ļ <u>Ļ</u>	<u> </u>		ļ.,,							1/3	ļ			
142	61	10	J ,4	4:1	1.2	1.6	3.3	0.7	0.2	0.3	2.7	0.5	+13 -19		72.3	+20	
143	Ĺ	25										ĺ					
144	Y	37	Y	<u> </u>			-		-	1				-			
					İ												
				,													
					ĺ												
		(0															
						L						L	<u> </u>				

10 mph -25 degrees HVOSM Simulations on Embankment Fills

\neg					7037	AC	CE		E R	AT	10					Handing	Taur
	Frant Slope		Ditch Conf.	Bock Slope	From Long.	10 5/09 10t. (G)	Yert.	NAME OF TAXABLE PARTY.	Dito Long.		Sock S. Vert. (G)		Max. Roll (deg)	Distance Airborne (ft)		Handing Ditch Contact (deg)	Prob. (%)
145 146 147	3:1	10 20. 30	A	0:1	2.4	3.7 1.7	6.6.	1.4 0.9 * 1.0					+28		71.6	+24 +25	
148 149 150	3:1	10 20 30	A	4.1	4.7 4.4 4.1	7.6 4.1 3.0	9.4 6.4 9.1	2.3 1.5 1.7	0.8 0.3 1.8	0.9 3.2 1.4	5./ 9.8 6.0	0.9	+28 -21 +19 -24 +21 -18 +21 -72 +21		71.6 73.0 75.7	+24 +25 +35	
151 152 153	4:1	10 20 30	A	0:1	0.1	0.4	2.6 4.1 4.4	0.4 0.7 0.8					+21 -7 +21 -8 +21		71.6 73.6 75.7	+26 +31 +30	
154 155 156	4:1	10 20 30	A	4:1	2.3	2.3	4.8	1.0 */.2 /.3	0.3	1.1	3.8 4.2	0.7	+21 -22 +21		71.6	+26	
57	6:1	10 20 30	A	0:1	0.1	0.5	2.7	0.5					-/9 +/2 - 7		71.6	+29	-
62	6:1	10 20 30	À	4:1	2.2	1.7	5.0	1.0	0.7	1.3	4.7	0.8	+12 -21		72.3	+29	
ē	×								·								
								,									
													L				-

					1	1105	M 51	mulat	ions	il. Eil	Z31.111	ZNI 1	=775					
5ped	.Pun	Front	Fill	Ditar	بخارنظ	Froi	A C nt Skop	C E	L L	Dit	AT	10.	N.S.	Max.	Distance	121 3	Harry)	Injer:
(defin)	No.	5/9; =	Ht. (ft)	Cant	· . ;	10ng	Lot. (G)	yert (G)	SI	Long.	1G)	Vert.	SI	Ro:	Airborns (ft)	(mirh)	Jis 1 -	·
50	201	2:1		A (7.5°	0:1	0.8	1.6	2.2	0.5	1	20.00							
70	202	7	10	7.5		0.7	1.7	3.0	0.6									
	203 204		10	A	0:1	0.2	0.1	4.7	0.8		-							
100	205	,	10		. ,	0.1	0.9	4.3	0.7									-
50	206 207	2:1	10	A	0.1	2.8	6.8	6.0	1.4									
60	208	2:1	10	25		0.7	1.0	8.8	1.5									
50	210	2:1	20	A -	0:1	0.5	1.6	4.4	1.60									
70	211		20	A		0.7	2.8	5.2 5.2	1.0	İ								
50	212	2:1	20	A	0:1	1.3	2.4	3.5	0.7									
60 70	213 214 215 216	į	20	A (5)	,	3.2 5.5	3.3	5.6 5.8	1.2									
50	216	2:1	20	A 25°	0:1	0.2	1.3	5.3	0.9									
60	211	V	20	(25°)	Y	5.6	10.7	11.1	2.9							-		1
-	2.0		-															
												-						
					-													

					H	1005,	M 51	mulat	ions.	i En	Zai.M	ent.	F. 15					
1							AC	CE	- 1 1	ER	AT	10.	NS		T		H22211	Za.
	Pur:	Front	FILL	Diter	BOLK	From	ne dine			Dit	rti	50 - 5	7-	Max.	Distance	M3.4.	312.1	-
	No.	5.5. =	Ht. (ft)	2.7.5	;	Long	Lat. (G)	161	57	Long.	1G;	Vert.	5I	Roi.	HIPDOPPIE (ft)	(nirh)	Sit 1 Constitutes	~
0	219	2:1	30	A _	01	0.7	35	£ 2	1.3	1								
	220		30	7.5	. !	0.6	3.6	6.	1.2									
	221		30	. Y	7	0.7	£	6.3	1.3									
		2.1	30	A	0:1	2.7	1.4	5.1	1.0							in .		
	223		30	6		1.4	1.7	5.5	1.0									
70	224	Y	32		Υ	2.4.	1.6	5.3	1.0									
0	225	2.1	30	A	0.1	3.7	2.8	4.5	1.1									
0	226		30	J		.3.7	1.9	5.1	1.1				ļ					1
0	227	Υ	30		Y	0.9	0.9	9.1		<u>. </u>					-			
0	228	2:1	10	A	2:1	0.8	1	2.3	0.5	0.1	1.6	2.1	0.5					
0	229		10	75	1	0.7	1.7	2.9	0.6	0.4	0.9	3.0	0.5	ł				_
0	230	Y	10	Y	Y	0.4	1.7	35	0.7	0.2	1.0	5.4	0.6		-		-	
0	231	2:1	10	A	2:1	2.0	2.5	7.0	1.3	1.8	1.0	5.0	0.7					
20	232	i	10		÷	1.5	0.5	4.5	0.8	0.1	0.4	3.5	0.6					
50	233		1.12	1	2:1	2.8		6.2	1.8	0.5	37	21	0.8	-	1		-	
	234 235	2:1	10	A	21	8.8	134	7.3		[]	3.7	2.5	0.9				1	
アカ	233	· ·	10	8	v	7.7	12.2	7.4	2.9	0.7	2.5	10,6	0.7					
,,,	236		10			10	177.5	1.2	=:0	6.0	C'	76 765	1	 	-		<u> </u>	
							-									,3v*		
							İ	į						l				
																		1
						i		i										

HVOSM Simulations a Entarmient F. 15																	
			D #	62	Eac	AC	CE	<u>L</u> L		AT			Ma		10.0	Herry,	Inger.
Rui No.	Size z	1	Diter	- ZOLA 	Long	12t.	Yer :-	SI	Long.	16)	Vert.		Max. Roi (deg)	Distance Airporna (ft)	Carl Stranger	Hes. 1,	
0 237 0 238 0 239 0 240 0 241 0 243 0 244 0 245 0 246	2:1 2:1 2:1 2:1	20 20 20 20 20 20 20 20 20 20 20	A A	2:1 Y 2:1	07 0.6 2.9 4.0 5.9 7.3 5.6 12.1	2.7 2.8 2.4 0.4 4.5 6.7 8.3 10.7 21.5	4.4 5.2 5.2 5.2 7.8 8.7 11.1 5.4	1.0 1.0 1.0 2.0 2.4 2.7 1.2	0.5 0.1 2.7 0.1 1.1 0.7 0.2	0.9 1.3 0.1 0.2 0.5 0.5 0.5 0.4	3.8 4.5 4.1 4.0 9.9 9.0 4 3.5 3.0 4.3 6 4 3.5 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3.5 4 3 3 5 4 3 3 3 5 4 3 3 3 3 3 3 3 3 3	1.0 1.9 0.7	(01)			(35x	
D 247 D 248 D 249 D 250 D 251 D 252 D 253 D 254	2:1	30 30 30 30 30 30 30 30	15	2:1	0.7 0.8 7.2 6.7 5.1 10.0 5.5	3.7 5.7 4.7 4.5 7.2 6.2	6.1 6.5 10.8 10.8 10.4 6.2 7.4 16.2	1.2 1.5 2.4 2.2 1.5 2.9 3.0	0.57 4.3 4.3 4.3 4.3	1.8 1.9 1.6 4.7 2.2 0.4 3.6	6.8 6.6 6.2 10.8 2.7 2.7 7.3	1.2 1.3 2.4 0.8 1.6 1.8 1.3					
						5				í.							

APPENDIX

F. SLOPE SEVERITY-INDEX EQUATIONS

Severity Index Equations for Type A Ditches

Adjustment factor to type B ditches = 0.81 Adjustment factor to type C ditches = 0.70

r	Υ		urcenes - 0.70	
Fill Ht.	Front Slope	Back Slope	Encr. Angle	Least Squares Equations
10	2:1	0:1	5° 10° 15° 20° 25°	SI = 0.000(v) + 0.533 SI = 0.015(v) - 0.190 SI = 0.045(v) - 1.633 SI = 0.028(v) - 0.400 SI = 0.010(v) + 0.900
20	2:1	0:1	5° 10° 15° 20° 25°	SI = 0.005(v) + 0.667 SI = 0.010(v) + 0.405 SI = 0.020(v) - 0.200 SI = 0.049(v) - 1.365 SI = 0.075(v) - 2.433
30	2:1	0:1	5° 10° 15° 20° 25°	SI = 0.000(v) + 1.267 SI = 0.000(v) + 1.170 SI = 0.000(v) + 1.000 SI = 0.010(v) + 0.543 SI = 0.020(v) + 0.033
10	2:1	4:1	5° 10° 15° 20° 25°	SI = 0.010(v) + 0.000 SI = 0.017(v) - 0.049 SI = 0.024(v) - 0.194 SI = 0.003(v) + 1.913 SI =-0.019(v) + 4.046
20	2:1	4:1	5° 10° 15° 20° 25°	SI = 0.005(v) + 0.648 SI = 0.023(v) - 0.233 SI = 0.049(v) - 1.456 SI = 0.074(v) - 2.252 SI = 0.112(v) - 3.463
30	2:1	4:1	5° 10° 15° 20° 25°	SI = 0.005(v) + 0.906 SI = 0.007(v) + 1.155 SI = 0.010(v) + 1.553 SI = 0.033(v) + 0.308 SI = 0.068(v) - 1.651
10	2:1	2:1	5° 10° 15° 20° 25°	SI = 0.010(v) + 0.000 SI = 0.017(v) - 0.050 SI = 0.025(v) - 0.200 SI = 0.003(v) + 1.970 SI =-0.020(v) + 4.167
20	2:1	2:1	5° 10° 15° 20° 25°	SI = 0.005(v) + 0.667 SI = 0.024(v) - 0.240 SI = 0.050(v) - 1.500 SI = 0.076(v) - 2.320 SI = 0.115(v) - 3.567
30	2:1	2:1	5° 10° 15° 20° 25°	SI = 0.005(v) + 0.933 SI = 0.007(v) + 1.190 SI = 0.010(v) + 1.600 SI = 0.034(v) + 0.317 SI = 0.070(v) - 1.700

Severity Index Equations for Type A Ditches

Adjustment factor to type B ditches = 0.81 Adjustment factor to type C ditches = 0.70

Fill Ht.	Front Slope	Back Slope	Encr. Angle	Least Squares Equations
10	3:1	0:1	5° 10° 15° 20° 25°	SI = 0.000(v) + 0.300 SI = 0.000(v) + 0.370 SI = 0.000(v) + 0.467 SI = 0.026(v) - 0.897 SI = 0.050(v) - 2.133
20	3:1	0:1	5° 10° 15° 20° 25°	SI = 0.000(v) + 0.567 SI = 0.003(v) + 0.373 SI = 0.005(v) - 0.233 SI = 0.010(v) + 0.700 SI = 0.015(v) - 0.100
30	3:1	0:1	5° 10° 15° 20° 25°	SI =-0.005(v) + 0.933 SI =-0.005(v) + 0.967 SI =-0.005(v) + 1.033 SI = 0.006(v) + 0.457 SI = 0.015(v) - 0.067
10	3:1	4:1	5° 10° 15° 20° 25°	SI = 0.005(v) + 0.133 SI = 0.009(v) - 0.027 SI = 0.020(v) - 0.533 SI = 0.031(v) - 1.000 SI = 0.060(v) - 2.400
20	3:1	4:1	5.º 10° 15° 20° 25°	SI =-0.005(v) + 1.167 SI = 0.003(v) + 0.697 SI = 0.020(v) - 0.367 SI = 0.024(v) - 0.407 SI = 0.030(v) - 0.600
30	3:1 	4:1	5° 10° 15° 20° 25°	SI = 0.010(v) + 0.667 SI = 0.012(v) + 0.460 SI = 0.020(v) - 0.133 SI = 0.021(v) + 0.056 SI = 0.025(v) - 0.033
10	3:1	2:1	5° 10° 15° 20° 25°	SI = 0.009(v) + 0.226 SI = 0.015(v) - 0.046 SI = 0.034(v) - 0.906 SI = 0.052(v) - 1.700 SI = 0.102(v) - 4.080
20	3:1	2:1	5° 10° 15° 20° 25°	SI =-0.009(v) + 1.984 SI = 0.004(v) + 1.185 SI = 0.034(v) - 0.624 SI = 0.040(v) - 0.692 SI = 0.051(v) - 1.020
30	3:1	2:1	5° 10° 15° 20° 25°	SI = 0.017(v) + 1.134 SI = 0.020(v) + 0.782 SI = 0.034(v) - 0.226 SI = 0.035(v) + 0.095 SI = 0.043(v) - 0.056

Adjustment factor to type B ditches = 0.81 Adjustment factor to type C ditches = 0.70

Fill Ht.	Front Slope	Back Slope	Encr. Angle	Least Squares Equations
10	4:1	0:1	5° 10° 15° 20° 25°	SI = 0.002(v) + 0.233 SI = 0.003(v) + 0.193 SI = 0.005(v) + 0.067 SI = 0.008(v) - 0.007 SI = 0.010(v) - 0.067
20	4:1	0:1	5° 10° 15° 20° 25°	SI = 0.005(v) + 0.067 SI = 0.005(v) + 0.133 SI = 0.005(v) + 0.167 SI = 0.006(v) + 0.243 SI = 0.010(v) + 0.067
30	4:1	0:1	5° 10° 15° 20° 25°	SI = 0.005(v) + 0.133 SI = 0.003(v) + 0.340 SI = 0.000(v) + 0.600 SI = 0.000(v) + 0.680 SI = 0.000(v) + 0.767
10	4:1	4:1	5° 10° 15° 20° 25°	SI = 0.010(v) - 0.167 SI = 0.008(v) + 0.087 SI = 0.005(v) + 0.333 SI = 0.007(v) + 0.407 SI = 0.010(v) + 0.367
20	4:1	4:1	5° 10° 15° 20° 25°	SI =-0.005(v) + 0.833 SI =-0.003(v) + 0.890 SI = 0.010(v) + 0.333 SI = 0.012(v) + 0.303 SI = 0.015(v) + 0.167
30	4:1	4:1	5° 10° 15° 20° 25°	SI =-0.008(v) + 1.447 SI =-0.007(v) + 1.423 SI =-0.004(v) + 1.360 SI = 0.001(v) + 1.133 SI = 0.006(v) + 0.860
10	4:1	2:1	5° 10° 15° 20° 25°	SI = 0.017(v) - 0.284 SI = 0.013(v) + 0.148 SI = 0.009(v) + 0.566 SI = 0.011(v) + 0.692 SI = 0.017(v) + 0.624
20	4:1	2:1	5° 10° 15° 20° 25°	SI =-0.009(v) + 1.416 SI =-0.005(v) + 1.513 SI = 0.017(v) + 0.566 SI = 0.020(v) + 0.515 SI = 0.026(v) + 0.284
30	4:1	2:1	5° 10° 15° 20° 25°	SI =-0.014(v) + 2.460 SI =-0.011(v) + 2.419 SI =-0.007(v) + 2.312 SI = 0.001(v) + 1.926 SI = 0.010(v) + 1.462

Fill Ht.	Front Slope	Back Slope	Encr. Angle	Least Squares Equations
10	6:1	0:1	5° 10° 15° 20° 25°	SI =-0.005(v) + 0.467 SI =-0.001(v) + 0.260 SI = 0.005(v) - 0.067 SI = 0.009(v) - 0.250 SI = 0.015(v) - 0.567
20	6:1	0:1	5° 10° 15° 20° 25°	SI =-0.005(v) + 0.467 SI =-0.001(v) + 0.260 SI = 0.005(v) - 0.067 SI = 0.009(v) - 0.250 SI = 0.015(v) - 0.567
30	6:1	0:1	5° 10° 15° 20° 25°	SI =-0.005(v) + 0.467 SI =-0.001(v) + 0.260 SI = 0.005(v) - 0.067 SI = 0.009(v) - 0.250 SI = 0.015(v) - 0.567
10	6:1	4:1	5° 10° 15° 20° 25°	SI =-0.005(v) + 0.767 SI =-0.001(v) + 0.560 SI = 0.005(v) + 0.300 SI = 0.013(v) - 0.037 SI = 0.020(v) - 0.367
20	6:1	4:1	5° 10° 15° 20° 25°	SI =-0.005(v) + 0.767 SI =-0.001(v) + 0.560 SI = 0.005(v) + 0.300 SI = 0.013(v) - 0.037 SI = 0.020(v) - 0.367
30	6:1	4:1	5° 10° 15° 20° 25°	SI =-0.005(v) + 0.767 SI =-0.001(v) + 0.560 SI = 0.005(v) + 0.300 SI = 0.013(v) - 0.037 SI = 0.020(v) - 0.367
10	6:1	2:1	5° 10° 15° 20° 25°	SI =-0.009(v) + 1.304 SI =-0.002(v) + 0.952 SI = 0.009(v) + 0.510 SI = 0.021(v) - 0.063 SI = 0.034(v) - 0.624
20	6:1	2:1	5° 10° 15° 20° 25°	SI =-0.009(v) + 1.304 SI =-0.002(v) + 0.952 SI = 0.009(v) + 0.510 SI = 0.021(v) - 0.063 SI = 0.034(v) - 0.624
30	6:1	2:1	5° 10° 15° 20° 25°	SI =-0.009(v) + 1.304 SI =-0.002(v) + 0.952 SI = 0.009(v) + 0.510 SI = 0.021(v) - 0.063 SI = 0.034(v) - 0.624

APPENDIX

G. BARRIER VII SAMPLE COMPUTER SIMULATIONS

INPUT DATA: Standard Size Auto

(50 mph/15 deg)

OUTPUT DATA: Interval Time at 140 msec

CONTROL INFORMATION

NUMBER	UF BARRIER NODES	=	97	
	OF CONTROL NODES	=	4	
NUMBER	OF NODE GENERATIONS	=	3	
NUMBER.	OF INTERFACES	=	1	
NUMBER	OF MEMBERS	=	127	
NUMBER	OF MEMBER GENERATIONS	=	9	
NUMBER	OF DIFFLRENT MEMBER SERIES	=	2	
NUMBER	OF ADDITIONAL WEIGHT SETS	=	0	
BASIC T	IME STEP (SEC) ALLUWABLE TIME STEP (SEC) TIME SPECIFIED (SEC) OF STEPS WITH NO CONTACT	=	0.00200	í
LARGEST	ALLUWABLE TIME STEP (SEC)	=	0.10000	Ú
MAXIMUM	TIME SPECIFIED (SEC)	=	0.80000	
MAX. NO	. OF STEPS WITH NO CONTACT	=	100	
OVERSHO	OT INDEX	=	0	
ROTATIO	NAL DAMPING MULTIPLIER	= .	1.00	
STEP-BY	-STEP INTEGRATION TYPE	=	1	

DUTPUT FREQUENCIES

AUTOMOBILE DATA	=	5
BARRIER DEFLECTIONS	=	5
BARRIER FORCES	=	10
ENERGY BALANCE	=	20
CUNTACT INFURMATION	=	5
PUNCHED JOINT DATA	=	0
PUNCHED TRAJECTORY	=	0

BEAM ELEMENTS. 100 SERIES

```
TYPE NUMBER
                             2.3100 00
                                        2.3100 00
M. OF I. (IN4)
AREA (IN2)
                          = 1.990D 00
                                        1.9900 00
                          = 3.7500 01
LENGTH (IN)
                                        1.875D 01
                        = 3.000D 04
YOUNGS MODULUS (KSI)
                                        3.000D 04
WEIGHT (LB/FT)
                        = 6.820D 00
                                        6.820D 00
YIELD FORCE (K)
                        = 1.0750 02
                                        1.0750 02
                    = 8.880D 01
= 1.000D-01
YIELD MOMENT (K.IN)
                                        8.880D 01
YIELD ACCURACY LIMIT
                                        1-0000-01
```

Q 1 - W 1

PUSTS. 300 SERIES

```
= 1
TYPE NUMBER
HEIGHT OF NODE I (IN)
                                   = 2.100D 01 2.100D 01
HEIGHT OF NODE J (IN) = 0.0

A AXIS STIFFNESS (K/IN) = 1.500D 01

B AXIS STIFFNESS (K/IN) = 1.660D 00

EFFECTIVE WEIGHT (LB) = 7.000D 01
                                                     0.0
                                                     2.200D 00
                                       1.660D 00
                                                     1.660D 00
                                                     7.000D 01
B AXIS YIELD MOMENT (K.IN) =
                                      1.000D 04
                                                     2.730D 02
A AXIS YIELD MOMENT (K.IN) =
                                       2.184D 02
                                                     2.184D 02
YIELD ACCURACY LIMIT
                                   =
                                       1.0000-01
                                                      1.000D-01
A SHEAR AT FAILURE (K)
                                   =
                                       1.0000 04
                                                     1.300D OL
                               = 1.0400 01 1.040D 01
= 1.000D 04 7.400D 00
= 7.400D 00 7.400D 00
B SHEAR AT FAILURE (K)
A DEFLN AT FAILURE (IN)
B DEFLN AT FAILURE (IN)
```

AUTO MOBILE PROPERTIES

WEIGHT (LB)	=	3820.0
MUMENT C	F INERTIA (LB.IN.SEC2)	=	36758.0
NO. UF C	ONTACT PUINTS	=	16
NO. OF L	INIT STIFFNESSES	=	3
NO. OF W	HEELS	=	4
BRAKE CL	DE (1=UN, 0=UFF)	=	0
NO. OF C	DUTPUT POINTS	=	1

UNIT STIFFNESSES (K/IN/IN)

NO.	BEFORE BOTTOMING	AFTER BUTTUMING	UNLUADI NG	BOTTUMING DISTANCE
1	0.500	3.000	4.000	15.00
2	0.875	5.250	7.000	15.00
3	1.250	7.500	10.000	15.00

CONTACT POINT DATA

POINT	COURD	S COORD	STIFFNESS NO.	TRIBUTARY LENGTH	INTE	RFACE	CONTA	CTS
1	-108.00	15.00	1	12.00	1	0	0	. 0
2	-108.00	27.00	1	12.00	1	0	0	Ö
3	-108.00	39.00	1	12.00	1	0	0	0
4	-96.00	39.00	1	12.00	1	0	0	0
5	-84.00	39.00	1	12.00	1	0	0	0
6	-72.00	39.00	2	30.00	1	0	0	0
7	-42.00	39.00	3	30.00	1	0	0	0
8	-12.00	39.00	3	30.00	1	0	0	0
9	18.00	39.00	3	30.00	1	0	0	0
10	48.00	39.00	2	12.00	1	0	0	0
11	60.00	39.00	1	12.00	1	0	0	0
12	72.00	39.00	1	12.00	1	0	0	0
13	84.00	39.00	1	12.00	1	0	0	0
14	84.00	27.00	1	12.00	1	0	0	0
15	84.00	15.00	1	12.00	1	0	O	ō
16	84.00	3.00	1	12.00	1	0	ō	ō

WHEEL COURDINATES (IN), STEER ANGLES (DEG), AND DRAG FORCES (LB)

POINT	R-DRD	S-ORD	STEER AND	LE DRAG FORCE
1	54.00	30.00	0.	0 518.00
2	54.00	-30.00	0.	0 518.00
3	-65.00	-30.00	0.	0 437.00
4	-65.00	30.00	0.	0 437.00

NITIAL POSITION AND VELUCITIES OF AUTU

PECIFIED BOUNDARY POINT	=	13
URDINATE OF POINT	=	860.00
URDINATE OF POINT	=	0.0
NGLE FROM X AXIS TO R AXIS (DEG)	=	15.00
ELOCITY IN R DIRECTION (M.P.H)	=	50.00
ELUCITY IN S DIRECTION (M.P.H)	=	0.0
NGULAR VELOCITY (RAD/SEC)	=	0.0
[NIMUM RESULTANT VELOCITY (M.P.H)	=	5.00
RANSLATIUNAL KINETIC ENERGY (K.IN)	Ē.	3831.87
autocomos successivos sono encurro approprieta approprieta e per successivos	-	0.0
GTAL INITIAL KINETIC ENERGY (K.IN)	=	3831.87

UTO TRAJECTURY RESULTS

T X-ORD Y-ORD ANGLE X-VEL Y-VEL R-VEL S-VEL T-VEL ANGLE X-ACC Y-ACC R-ACC S-ACC T-ACC ANGLE TIME = 0.0 SECS 1 729.0 -59.4 15.0 48.30 12.94 50.00 0.00 50.00 15.0 0.0 0.0 0.0 0.0 0.0

ARRIER DEFLECTIONS, TIME = 0.0 SECS

NUDE	X-DEFL	Y-DEFL	X-URD	Y-URD
1	0.0	0.0	0.0	0.0
2	0.0	0.0	37.5	0.0
3	0.0	0.0	75.0	0.0
4	0.0	0.0	112.5	0.0
5	0.0	0.0	150.0	0.0
6	0.0	0.0	187.5	0.0
1 2 3 4 5 6 7 8	0.0	0.0	225.0	0.0
	0.0	0.0	262.5	0.0
9	0.0	0.0	300.0	0.0
10	0.0	0.0	337.5	0.0
11	0.0	0.0	375.0	0.0
12	0.0	0.0	412.5	0.0
13	0.0	0.0	450.0	0.0
14	0.0	0.0	487.5	0.0
15	0.0	0.0	525.0	0.0
10	0.0	0.0	562.5	0.0
17	0.0	0.0	600.0	0.0
18	0.0	0.0	037.5	0.0
19	0.0	0.0	675.0	0.0
20	0.0	0.0	693.8	0.0
21	0.0	0.0	712.5	0.0
22	0.0	0.0	731.3	0.0
23	0.0	0.0	750.0	0.0

DATA UN AUTU-BARRIER CENTACT, TIME = 0.1300 SECS

AUTU	CUNTACT	CONTACT BETWEEN			×	Y	NURMAL	x	Y	
PUINT	INTERFACE	NUDE	AND	NUDE	COURD INATE	COURDINATE	FORCE	FORCE	FORCE	
12	1	32	15	31	900.45	9.03	0.67	-0.32	-0.64	
13	1	32		31	909.35	8.47	5.61	-2.68	-5.41	

AUTO TRAJECTORY RESULTS

PT X-GRD Y-ORD ANGLE X-VEL Y-VEL R-VEL S-VEL T-VEL ANGLE X-ACC Y-ACC R-ACC S-ACC T-ACC ANGLE

TIME = 0.1400 SECS
1 842.5 -39.1 7.1 43.46 3.22 43.53 -2.15 43.58 4.2 -0.72 -1.34 -0.87 -1.24 1.52 -118.1

BARRIER DEFLECTIONS, TIME = 0.1400 SECS

NODE	X-DEFL	Y-DEFL	X-DRD	Y-GRD
1	0.37	0.01	0.4	0.0
2	0.37	-0.00	37.9	-0.0
3	0.37	-0.01	75.4	-0.0
4	0.38	-0.01	112.9	-0.0
5	0.38	-0.01	150.4	-0.0
1 2 3 4 5 6 7	0.39	0.01	187.9	0.0
7	0.39	0.02	225.4	0.0
8	0.39	0.03	262.9	0.0
9	0.40	0.01	300.4	0.0
10	0.40	-0.02	337.9	-0.0
11	0.41	-0.05	375.4	-0.0
12	0.42	-0.06	412.9	-0.1
13	0.42	-0.03	450.4	-0.0
14	0.43	0.03	487.9	0.0
15	0.44	0.09	525.4	0.1
16	0.44	0.12	562.9	0.1
17	0.45	0.10	600.5	0.1
18	0.46	0.04	638.0	0.0
19	0.47	-0.02	675.5	-0.0
20	0.47	-0.02	694.2	-0.0
21	0.48	0.01	713.0	0.0
22	0.48	0.13	731.7	0.1
23	0.49	0.35	750.5	0.4
24	0.49	0.88	769.2	0.9
25	0.48	1.60	788.0	1.6
20	0.47	2.56	806.7	2.6

BEAMS (100 Series)

Axial force is tension positvie. Bending moments are positive clockwise on member ends.

MEMBER FORCES. TIME = 0.1400 SECS

BEAMS 100 CEDIES		THE RESERVE OF THE PERSON OF T	* 1	7	+)
BEAMS, 100 SERIES MEMBER NODE I	NODE J	TYPE FORCE	I-MOMENT J-	MOMENT F-CODE	M-CODE
1 1	2	101 5.72	-0.00	-0.04	1
2 2	3	101 5.78	0.04	-0.21 1	1
3 3	4	101 5.83	0.21	-0.42	1
, , , , , , , , , , , , , , , , , , ,	5	101 5.89	0.42	-0.52	î
÷	6	101 6.98	0.52	-0.06	*
5 5					
6 6	7	101 7.04	0.06	0.54	a
7 7	8	101 7.09	-0.54	1.00	1
8 8	9	101 7.15	-1.00	1.06	1
9 9	10	101 8.28	-1.06	-0.01 1	1
10 10	11	101 8.33	0.01	-1.23 1	1
11 11	12	101 9.48	1.23	-1.90 1	1
12 12	13	101 9.54	1.90	-1.72 1	1
13 13	14	101 10.70	1.72	-0.18 1	1
14 14	15	101 10.76	0.18	1.52	ī
15 15	16	101 11.95	-1.52	2.70 1	Y X IV
16 16	17	101 12.01	-2.70	2.38	î
		101 13.23		0.31	•
17 17	18		-2.38		4
18 18	19	101 13.28	-0.31	-3.48 1	
19 19	20	102 14.52	3.48	-8.50	1
20 20	21	102 14.55		-14.47 1	1
21 21	22	102 14.57		-21.89	1
22 22	23	102 14.60	21.89	-31.24 1	1
23 23	24	102 15.86	31.24	-37.56	1
24 24	25	102 15.88	37.56	-47.03	. 1
25 25	26	102 15.90	47.03	-60.24 1	1
26 26	27	102 15.93	60.24	-69.57 1	1
27 27	28	102 17.36		-83.23 1	ī
28 28	29	102 17.40	83.23	-80.09 1	ä
29 29	30	102 17.20		-29.51 1	2
30 30	31	102 16.86	29.51	51.22	-
30 30	32	102 16.75	-51-22	80.17	2
31 31		102 14.96	-80.17	33.57	2
32 32	33				-
33 33	34	102 15.01		-12.78	4
34 34	35	102 15.03	12.78	-62.92	ı
3 5 3 5	36	102 14.02		-45.51 1	1
36 36	37	102 14.05		-34.03	1
37 37	38	102 14.08	34.03	-27.13 1	1
38 38	39	102 14.10	27.13	-23.63	1
39 39	40	102 13.31	23.63	-18.02 1	1
40 40	41	102 13.33		-13.84	ī
41 41	42	102 13.35		-10.41 1	i
42 42	43	102 13.36	10.41	-7.21	1
	7 7				
	44	102 12.60	7.21	-5.42 1	1
A 2	45	102 12.62	5.42	-3.50 1	1
45 45	46	102 12.64	3.50	-1.54	1

M-Code = flexural state indicator:

1 = elastic;

2 = yielded at i only;

3 = yielded at j only; 4 = yielded at i and j.

F-Code = extensional state indicator:

1 = elastic; 2 = yielded.

POSTS,	300 SERIES			~				
MEMBER	NODE I	NODE J	TYPE	A-SHEAR	B-SHEAR	B-MOMENT	A-MOMENT	CODE
97	1	O	301	5.51	0.01	115.64	0.19	1
98	5	0	302	0.84	-0.01	17.63	-0.22	1
99	9	0	302	0.88	0.02	18.45	0.49	i
100	11	0	302	0.90	-0.08	18.94	-1.71	1
101	13	0	302	0.93	-0.05	19.49	-1.03	1
102	15	0	302	0.96	0.15	20.11	3.12	1
103	17	0	302	0.99	0.17	20.82	3.62	ĩ
104	19	0	302	1.03	-0.03	21.64	-0.59	ī
105	23	0	302	1.08	0.59	22.59	12.30	i
106	27	0	302	1.03	2.83	21.53	59.43	ī
107	31	0	302	0.0	0.0	0.0	0.0	ō
108	35	0	302	-0.85	5.12	-17.83	107.47	1
109	39	0	302	-0.91	0.83	-19.16	17.38	ī
110	43	0	302	-0.88	-0.22	-18.52	-4.55	1
111	47	0	302	-0.85	-0.15	-17.79	-3.12	ī
112	51	0	302	-0.81	0.01	-17.10	0.19	ĩ
113	55	0	302	-0.78	0.02	-16.45	0.41	ĩ
114	59	0	302	-0.75	-0.00	-15.83	-0.06	ī
115	63	0	302	-0.73	-0.00	-15.25	-0.08	ī
116	67	0	302	-0.70	0.00	-14.70	0.03	1
117	71	0	302	-0.68	0.00	-14.19	0.01	ī
118	75	0	302	-0.65	-0.00	-13.72	-0.01	ī
119	79	0	302	-0.63	0.00	-13.28	0.00	1
120	83	0	302	-0.61	0.00	-12.87	0.00	1
121	85	0	302	-0.59	-0.00	-12.49	-0.00	1
122	87	0	302	-0.58	0.00	-12.14	0.00	1
123	89	0	302	-0.56	0.00	-11.82	0.00	1
124	91	0	302	-0.55	-0.00	-11.53	-0.00	1
125	93	0	302	-0.54	0.00	-11.27	0.00	1
126	95	0	302	-0.53	0.00	-11.04	0.00	1
127	97	0	301	-3.52	-0.00	-73.92	-0.00	1

Posts (300 Series)

Shear forces and bending moments are positive for forces on the post in the positive A and B directions. $Code = state \ indicator$

APPENDIX

H. W-BEAM GUARDRAIL SEVERITY-INDEX EQUATIONS

Impact Angle	Severity Index Equations	SI Adjustment Factors		
5°	SI = 0.01475(Vel) - 0.2660	0.89		
10°	SI = 0.01228(Vel) - 0.0470	0.91		
15°	SI = 0.01222(Ve1) + 0.2470	0.93		
20°	SI = 0.01448(Vel) + 0.1678	1.06		
25°	SI = 0.01727(Vel) + 0.1827	1.06		

APPENDIX

I. CASE STUDY NO. 1 (INPUT DATA AND OUTPUT)

ROADSIDE HAZARD INVENTORY FORM

	Invento	ry Conduc	ted by	Riche	nd	KUB	/	De	ate _	06 50	pt	79	
Γ	нівну	AY				10.000							
	Hughway Drough Number	Highway Number	Dossph Speed Imph)	ADT	Lane Width (h)	Uselple Shoulder Width (N)	Width Shoulder Surfacing (f1)	Median Welth (ft)	Deg of Curve	Grade INI UP DN	Shoulder Drep off (in)	Condition Non-Period Shoulder	_
\otimes		1-210	60	10 11 12 13 14	15 16	17 10	19 20	21 22	73	24 25	26	7	BOX
	1. DR 2. DM 3. ROA 4. RC 5. RL	1. US 2. N 3. I 4. SEC		Convey to the convey of the						·		1 Smooth 2 Rough	
	HAZARI Description	D CLASSIF	CATIO	N				MIL	E POI	NT AT	HAZAI	RD	
	Hazard Number	Identification Code	Descripte Code	or Officer Code	Gree	openg Aber			Regioning		Ending		X 2
\otimes	28 29 30 31	32 33	02 34 36	36	37	38		39 40	000	44 45	0010	, %	BOX
	***		Ip over	1. Regi 2. Left or A			1.	V 1					
ſ	POINT I	HAZARDS		aci i eveno d e apropriato de la		<u> </u>		-4+			***************************************]
		Offices (ft)		Wadth (ft)			Longth (ft)		٢	Hought (in)	nters Only	Depth (in)	8 X
0	1	52 53) 9	G4 56			57 58 59			60 61			BOX
L							37 56 55]
	LONGIT	UDINAL H	AZARD	S (Guard	rails, B	ridger	ils, Bar	rier W	alls, c	and Cur	bîs)		
		Other (h)		Yes Heads	Post .	Post Guardiad Rub				Guardrad End Treatment			4
0	2 [(m)		1 21 11-24-1	nd Blockmil		•		[BOX
	51 52	63	54 66	56 57	58 59	1. Reduce 2. Not Re	61 d 1 No. duced 2 Yes	62 1. No 2. Ye	a Z. And	Anchored (to 9 hored (to 9 hored Turndow	round or Brid	(ee)	
									4. Bre	akaway Termina	Design		
	SLOPE I	HAZARDS	(Media	n Ditches	, Road	side Di	tches, F	ill Ditcl	nes, a	ind Cut	Slope	s)	
~	_	Hings Point Offset 1917	Front Stope (average)	Frunt Slope Height (It)	D.		Bluga Bluga faverage i	Back Sing Height (ft)	•	Condition of Slopes	Depth of Water		2
8	61	62 63	2:1	56 56	L.	58	2:1	0 5		62	63		BOX
							***************************************			1 Smootl 2 Rough	2 1	None Less then 2 ft Greater than 2 ft	
	DA]
\otimes	08 3	0-1719	Recummenda	ions CH	SE	570	IDY .	1			1	vine.	BOX 6
	70 71 12	73 74 75		ž							MO		æ

	Improvement Recommended by Richard Ruby Date 06 Sept '79	
\otimes	HIGHWAY Inspired Humber Bosel (might) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 DR SRIL 1 US 2 DM 2 N 3 ROA 3 1 4 8 C 5 RL	BOX 1
$\otimes \left[\rule{0mm}{2mm} \right.$	COSTS Cupital Cons (8),000) Cultiran Mantenance (8)00/excul 1 Morrial Maintenance (8)00/excul 1 Morrial Maintenance (8)00/excul 1 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	BOX 2
0	POINT HAZARD IMPROVEMENTS 1 1 Affeviable Hazard 32 1. Remove 2. Make Broadcasty and/or Relocate 3. Reconstruct Inlet to Safe Dasign 4. Reconstruct Cross Drainage System.	e x
	1 2 Install Traffic Barrier 32 33 Oescriptor Code 34 36 36 37 Length (ft) 1 3 Install Energy Attenuator 32 33 Descriptor Code	BOX
	LONGITUDINAL HAZARD IMPROVEMENTS 2	Box 4
○ ※	SLOPE IMPROVEMENTS 3 1 Install Traffic Barrier 30 2 Install Traffic Barrier 31 3 34 Descriptor Code 32 2 Not at Braige 33 34 Rich Stone Hoppin Black Hoppin	BOX 5
	NO IMPROVEMENT	BOX 6
	BOX A (TRAFFIC BARRIER MODIFICATIONS) Other 1 True Protect Searcing Pos	BOX A
X	BOX B (CHANGES TO EXISTING GUARDRAIL) Angular Company Control Company Control Company Control Company Control	BOX C
0	1 tool of Group and Program [2] IBM Could Type	0X 7

	Improvement Recommended by Richard Ruby Date 06 Sept '79	
\otimes	HIGHWAY Institute	BOX 1
\otimes	COSTS Capital Certs (81,000) Collision Municipance (8100/pc)	BOX 2
0	POINT HAZARD IMPROVEMENTS 1 1 Remove 32 2. Make Breakeney sint for Relocate 3 Reconstruct Inlet to Safe Design 4. Reconstruct Cross Drampa System	K 3
0	1 2 Install Traffic Barrier	BOX
	1 30 31 Install Energy Attenuator 32 33 Descriptor Code	
	LONGITUDINAL HAZARD IMPROVEMENTS 2 1 Aernove and Regrate 32 2 Instell Wedge Modification	4
0	2 1 satis Barret	BOX 4
0	30 31 32 2. Modify (complete Buses A. H.&.C) 31 34 (New Design Circle) 2. Replace with New Design (complete Boses A. B.&.C) 3. Bestyerail 32 2. Modify (complete Buses A. H.&.C) 3. Replace with New Design (complete Boses A. B.&.C) 3. Descriptor Code 33 34 Oescriptor Code	
X	SLOPE IMPROVEMENTS 3 1 Install Traffic (Berrier 31 7 Not at fireflye 31 34 Description Godle 31 24 Description Godle 31 34 (complete Boxes A and C) 17 Not at fireflye 31 34 (long Fount front	(5
0	Complete Box C Complete Box C Complete Box C Complete Box C Complete	BOX
	NO IMPROVEMENT	BOX 6
8	BOX A (TRAFFIC BARRIER MODIFICATIONS) Continue	BOX A
R	BOX B (CHANGES TO EXISTING GUARDRAIL) Responses Limits Limi	BOX C
(8)	1 Lest of Group 79 2 Fed of Group and Program 80	0X 7

	Improvement Recommended by Richard Ruby Date De Sept 179	
\otimes	HIGHWAY Hoghware Speed Speed Impal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 DASRL 1 US 1 DA SRL 1 US 1 NO 3 NO 3 1 1 0 8 5 C 6 8 NL	BOX 1
\otimes	COSTS Capital Centri IS1,0001 Collision Maintenance IS100/secid 1 Normal Maintenance IS100/secid 1 Norma	BOX 2
0	POINT HAZARD IMPROVEMENTS 1	x 3
0	1 2 Install Traffic Barrier Descriptor Code 34 35 36 37 Length (ft) 30 31 Install Energy Attenuator Descriptor Code	BOX
	LONGITUDINAL HAZARD IMPROVEMENTS 2 1 Curb 1. Remove and Regrate 30 31 Curb 2. Install Wedge Modification 2 2 1 raths Barrier 32 2. Install Wedge Modification 2 3 1 Remove and Regrate 1. Remove 2. Modify (complete Buses A. B & C) 3 1 Remove 2. Modify (complete Buses A. B & C) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	BOX 4
⊗	SLOPE IMPROVEMENTS 3	BOX 5
0	NO IMPROVEMENT	BOX 6
Ø	BOX A (TRAFFIC BARRIER MODIFICATIONS) Top (ft)	BOX A
X	BOX B (CHANGES TO EXISTING GUARDRAIL) Beginning Linking	BOX C
8	1 test of Group 2 End of Group and Program 1 test of Group and Program 1 test of Group and Program	30X 7

	Improvement Recommended by Richard Ruby Date 06 Sept 179	
\otimes	HIGHWAY Heighnery Heighnery Recent Impair Market Number Recent Impair Herent Group Number 1 2 3 4 5 6 7 8 8 10 11 12 13 14 1 OP SPIL 1 US 2. DM 2. N 3. ROA 3. I 4. SEC 5. RL	BOX 1
\otimes	COSTS Copital Costs (81,0001 Cultiuren Meintenance (8100/scrid) Normal Meintenance (8100/scrid)	BOX 2
0	POINT HAZARD IMPROVEMENTS 1	ж ж
0	1 2 Install Traffic Barrier	BOX
O[1 3 Install Energy Attenuator 32 33 Descriptor Code	
0	LONGITUDINAL HAZARD IMPROVEMENTS 2 1 Curb 1 1 Remove and Regrete 2 Instell Weller Monthication	4
	2 2 1 raffic Harrier 31 1 Hernove 32 2 Mouthy (complete Buxes A, B & C) 33 34 (New Design Only) 3. Replace with New Design (complete Buxes A, B & C)	BOX
	2 3 Bridgeral 1. Modify 32 2. Replace with New Design 33 34 Pescriptor Corla	
0	SLOPE IMPROVEMENTS 3 1 Install Traffic Barrier	x 5
Ø	Complete Box C Complete Box C Complete Box C Complete Box C Complete Box C Complete Box C Complete Box C Complete Box C Complete Box C Complete Box C Complete Comple	BOX
0	NO IMPROVEMENT	80X 6
0	BOX A (TRAFFIC BARRIER MODIFICATIONS) Other International Post Specing Post Specing think But Braining Free International Post Specing of at Bridge Int International Post Internationa	BOX A
X	BOX B (CHANGES TO EXISTING GUARDRAIL) Requirement 1 1 Lengtheri 1 2 Shurten 1 2 Shurten BOX C (MILE POINT OF CHANGE) 1 1 Lengtheri 1 2 Shurten 1 1 Lengtheri 1 2 Shurten	BOX C
(2)	1 tred of Group and Program [2] IRM Card Type 80	0X 7

COST EFFECTIVENESS PROGRAM

UNIVERSITY OF NEBRASKA AND NEBRASKA DEPARTMENT OF ROADS

HIGHWAY DESIGN NUMBER = DR- 5
TYPE HIGHWAY = US-210
DESIGN SPEED = 60 MPH
ADT = 1000
PROJECT LIFE = 20.0 YRS
INTEREST RATE = 9.000 %
DATE = 8-30-79

PAGE = 2

HAZARD NO	GRCUP NO	ILENT CGDE	DESC	HAZARI	SICE OF RCAD	SILE-	-POST END	IMPR ALT	IMPR CODE	HAZARD INDEX (INJ/YR)	M F CLEAR RECOVER ZONE (FT)	FI Y C	ORST OST	V E TOTAL ANNUAL COST (\$/YR)	COST	ZERO ACCIDENT REDUCTION (%)	BENEFIT COST RATIO
1	10	7	2	0.01604	1	160.000	100.100	1	3-2-0	0.00895	8		6.1	0	94	86	865.2
1	10	7	2	0.01604	1	100.000	100.100	2	3-1-2	0.00498	10		12.5	3	339	80	249.3
1	10	7	2	0.01604	1	100.000	100.100	3	3-1-2	0.00577	4		9.0	, 3	348	81	256.4
1	10	7	2	0.01604	1	100.000	100.100	4	3-2-0	0.00895	8		3.5	0	54	86	1507.9

COMPUTER OUTPUT LISTING OF CASE STUDY NO. 1

APPENDIX

J. CASE STUDY NO. 2 (INPUT DATA AND OUTPUT)

FIGURE 1.

ROADSIDE HAZARD INVENTORY FORM

	Inventory Conducted by	Richard Ruby	Date 06 Sept 79	
\otimes	HIGHWAY Highney Design Heghney Seed (night) 1 2 3 4 5 6 7 8 9 10 1. DR 1. US 2. DM 2. N 3. ROA 3. I 4. RC 4. SEC 5. RL	ADT Lane Shoulder	Median Des Grade Shawfeer Condition of the Drep of Ren Pavel Showfeer Condition Ories UP DN Prof. Prof. Showfeer Showfeer Candition Ories UP DN Prof.	BOX 1
\otimes	HAZARD CLASSIFICATION Description Guardrai Hazard Mentification Code Code Code 28 29 30 31 32 33 34 36	Code Grouping Number	39 40 41 42 43 44 48 48 47 48 49 50	BOX 2
0	POINT HAZARDS Officet (fr) 1	Welch (rd) Length (rh) (rh) 54 55 57 58 59	Drea Inters Only	BOX 3
\bowtie	LONGITUDINAL HAZARDS Other (In) Been End 2 07 51 52 53 54 55	(Guardrails, Bridgerails, Ba Top Height Spacing Pest Spacing (1th Bridge End Brockout 27 /2 0 61 1. Reduced 1. No. 2. Not Reduced 2. You	Guardraf End Trestment Rub Rad Beginning Ending	BOX 4
	SLOPE HAZARDS (Median Hings Paint Front Wope (Int) Statistics 3	Ditches, Roadside Ditches, F Front Bloga Ditch Height Worth Bloom (111) 111 112 113 155 56 57 58 59	1	BOX 5
\otimes	DATE Mo. Day Vr. 0 9 0 7 9	. CASE STUL		80X 6

	Improvement Recommended by Bichard King Date 06 Sept 77	
\otimes	HIGHWAY Highway Highway Design ADT Hazard Number 2	BOX 1
\otimes	COSTS Capital Costs (\$1,000) Cultisus Maintrance (\$100'secid) Normal Maintenance (\$100,yr.) DDDP 15 16 17 18 19 20 21 22 23 24 25 Hazard Improvement Hazard Improvement	BOX 2
0	POINT HAZARD IMPROVEMENTS 1	x 3
0	1 2 Install Traffic Barrier 32 33 Descriptor Code 34 36 26 37 Length (ft)	BOX
	1 30 31 Install Energy Attonuator 22 33 Descriptor Code LONGITUDINAL HAZARD IMPROVEMENTS]
0	2 1 Curb 1 Remove and Regrade 30 31 Curb 32 2 Install Wedge Modification	4
X	2 2 1. Remove Design (complete Boxes A, B & C) 31 34 (New Design Only) 3. Replace with New Design (complete Boxes A, B & C)	BOX
\bigcirc	2 3 Bridgerail 1. Modify 32 2. Replace with New Design 33 34 Descriptor Code	
	SLOPE IMPROVEMENTS 3 1 Install Traffic Barner Complete Boxes A and Cl 32 2. Not at Bridge 33 34 Descriptor Gode	5
0	Himpe Point Front Front Stope Drich Back Hack Stope Condition Use the distribution Use the distr	BOX
	NO IMPROVEMENT	BOX 6
0	BOX A (TRAFFIC BARRIER MODIFICATIONS) Other Top Hospit Spacing Post Spacing of at Bridge End Out Hull Beginning Living Hardward Indian State of Section 1. No. 1. No. 1. No. 1. No. 1. No. 1. No. 2. Not Reduced 2. Yes 2. Anchored to ground or bridge 3. Anchored Turndown float transvery 4. Brenkawey Terminal Dasign	BOX A
\bigcirc	BOX B (CHANGES TO EXISTING GUARDRAIL) Beginning Finding Change in Length fft Change in Length fft 1. Lengthen 1. Lengthen 1. Lengthen 63 64 Change in Length fft Change in Length fft Change in Length fft Box C (MILE POINT OF CHANGE) Beginning Ending Ending Change in Length fft Change in Length fft Change in Length fft Box C (MILE POINT OF CHANGE)	BOX C
\otimes	1 End of Group 79 2 End of Group and Program 80	0X 7

Improveme	nt Recommend	led by 2	riche	ard Mub	4	Date <u>06</u>	Sept	79
HIGHWAY Highway Design Number 1 DR SRL 2 DM 3 ROA 4 RC 5 RL	11-ghway Number 4 5 6 7 1. US 2. N 3. i 4. SEC	Design Speed (night)	0 / 2 10 11 1	234		Hazard Number Hazard Group Number Improvement Afternation	s Number	2 2 2
COSTS Capital Costs (\$1,000) 0 0 5 15 16 17 18 19			Collision Mains OOJ 20 21 22 Hazard	enance (\$100/sccrd) OO/ 23 24 25 Improvement			Normal Mari 26 27 Hazard	ntenance (\$100/yr) 28 29 Improvement
a	ZARD IMPROV	EMENTS	32	Remove Make Breakaway and Reconstruct Inlet to Reconstruct Cross Dr	Safe Design			
30 31	Instell Traffic Berrier (complete Box A)		32 33	Descriptor Code]	34 35 36 37	ength (f1)
2 1 30 2 30 2 31 2 30 3 31	INAL HAZARD Curb Traffic Barrier Bridgerail	IMPRO	32	1. Remove and Regrate 2. Instell Wedge Modific 1. Remove 2. Modify Complete Bo 3. Replace with New De 1. Modify 2. Replace with New De	exes A, B & C) prign (complete B	oxes A, B & C)	33 34 (1	Descriptor Code New Design Only)
3 1 31	Control (41) Ia	Front Bops erriges	32 Front Slope Height (fit) 35 36	1. At Bridge 2. Not at Bridge Date Worth (fr) 37 38	Hack Store S	Rack Stope Hoght (ttl.	33 34	Descriptor Code Depth not Water (fit) 43 1 Name 2 Less then 2 H. 3 Greeter than 2 fr.
NO IMPRO	VEMENT					Marie Vision Colonia, Servi	10 Ale (10 Ale	
BOX A (TR Offset (ft) Begin End D 7		R MODIF	Post of a B	Specing Block Out	Ruth Red	3 An	Guardrail End Tri t Anchored (to gro chored (to ground chused Turnslum skaway Terminal O	Finding
BOX B (CI	HANGES TO EX	KISTING engthen	Chen	DRAIL)	[0]S	C (MILE PO	05	CHANGE) 1 rating 2 73 74 /5 76
1 End of Group 79 2 End of Group	p p sod Program				[2] (8	M Card Type	, , , , , , , , , , , , , , , , , , ,	

Impro	vement Recomm	ended by	Sich	ard Rub	4 1	Date	6 Sept	19	
HIGHV	Highney Number 7 4 5 6 7	Design Speed (mgh)	01	232 12 13 14		Hazard Number Hazard Group Numbs Improvement Alterna	er	2 2 3	1 70
1 DR SRL 2 DM 3. ROA 4. RC 5. RL	1. US 2. N 3. I 4. SEC								
COST:	(\$1,000)		Collision Main 20 21 22 Hazard	itenence (\$100/sccid 20 / 22 24 25 Improvement			Normal Mar 26 27 Hazard	ntenance (\$100 yr) 28 29 Improvement	200
POIN	T HAZARD IMPRO	OVEMENT	s						Ī
1 30	1 Alleviate Hazard		32	Remove Make Breekaway and Reconstruct Inlet to Reconstruct Cross D	Safe Design				
1 30	2 Install Traffic Barrier (complete Box A)		32 33	Descriptor Code			34 35 36 37	ength (ft)	1
1 30	3) Install Energy Attenuato	,	32 33	Descriptor Code					
LONG	ITUDINAL HAZA	RD IMPR	OVEME	NTS					
30	1 Curb		32	Remove and Regrade Install Worke Modifie	cation				,
2 30	2 Traffic Barrier		2	Remove Modify (complete (le Replace with New D	uxes A, B & C)	ixes A H & C;	31 34	Descriptor Code New Design Only)	200
2 30	31 Bridgerati		32	1 Mixilify 2. Replace with New D	usign		33 34	Jescriptor Gode	
SLOP	E IMPROVEMENT	s						-	
30	1 Install Traffic Burner 31 (complete Boxes A and C	:)	32	At Bridge Not at Bridge	•		33 34	Descriptor Code	
30	Hope Point Offset (tt) 2 Modely 32 33 (complete Box C)	Front Stope (average)	Front Slope Height (ft) 35 36	Drich Width Ifti	Stope (verage)	Height (fr)	Condition of Slopes 42 1 Smooth 2 Rough	Depth of Water 1911 43 1 None 2. Less than 2 ft 3. Greater than 2 ft	>00
NO 1/	MPROVEMENT								4 700
, OI	A (TRAFFIC BARI	Post	1	ONS)		1 1	Guardrad End I	retained	j
Begin 10	Top Itseph Itse	Spacing (1)] 	nt Spacing Mock Printer Lind Char	[<u>Z]</u>	Hegenous 59	lot Anchorad (to go nicharal to ground nicharad tourdown raskaway Tarminal I	inting [2] file	200
Reginning	B (CHANGES TO			RDRAIL) & X	1050	(MILE F		CHANGE) 1 rations 0 2 4 7 7 76 76) XO
79 1. F	rel of Group nel of Group and Program				[2] 18	M Carel Type			OX 7

	Improvement Recommended by Bichard Ruby Date 06 Sept 179	
	HIGHWAY Highway Drungh Number Bored Imph1 1 23 4 5 6 7 8 9 10 11 12 13 14 1. DR SRL 1. US 2. DM 2. N 3. ROA 3. 1 4. SEC 5. RL	L AOA
	COSTS Capital Costs (\$1,000) Collision Maintenance (\$100/accd.) Normal Maintenance (\$100/accd.)	200
	POINT HAZARD IMPROVEMENTS 1 1 Remove 32 2 Made Drasheway and/or Relocate 3. Reconstruct Infer to Safe Design 4. Reconstruct Cross Drainage System	
	1 2 Install Treffic Barrier	>0
)	1 30 Install Energy Attenuator 32 33 Descriptor Code	
	LONGITUDINAL HAZARD IMPROVEMENTS 2 1 1 Curb 1. Remuve and Regrade 30 2. Instell Wedge Modification]
1	2 2 Traffic Barrier 31 1. Remove 2. Modify (complete Boxes A, B & C) 33 34 Descriptor Code (New Yoruga Only 3. Reptice with New Design (complete Boxes A, B & C)	N C
	2 3 Burtigeral 32 1. Modely 33.34 Descriptor Code	
	SLOPE IMPROVEMENTS 3	, XO
	(ft)	1
)	NO IMPROVEMENT [4] 30	A XOR
{	BOX A (TRAFFIC BARRIER MODIFICATIONS) Offset From Spearing of at Bridge End (Frt Red Part Re	A YOR
X	BOX B (CHANGES TO EXISTING GUARDRAIL) Reginating I Lengtheri 1 Lengtheri 2 Shurten 0/2 2 Shurten 0/3 2/4 1/5 2/5	ROX C
٥[1 End of Group 29 2 End of Group and Program 40 IBM Cerd Type	0 X 7

FIGURE 1.

ROADSIDE HAZARD INVENTORY FORM

	Inventory Conducted by Richard Ruby	Date 06 Sept 79	
\otimes	HIGHWAY Highway Design Board Flored	of Curve UP DN Drop off Non-Parad	BOX 1
\otimes	Description SIOPE Marved Monthration Descriptor Offset Grouping Number SO S S S S S S S S S S S S S S S S S S	Beginning Ending 550/100 050250 9 40 41 42 43 44 45 46 47 48 49 50	BOX 2
0	POINT HAZARDS Offset (ft) Wedth (ft) Length (ft) 1	Height Drop Inlets Only Depth (in) 60 61 62 63	BOX 3
0	LONGITUDINAL HAZARDS (Guardrails, Bridgerails, Barrier V	Beginning Ending 2 63 64 No 1. Not Anchored (to ground or Bridge)	BOX 4
×	3 06 3:1 15 08 3:1 [A Mages terph Condition of Slopes Depth of Water Of Slopes D 61 E2 63 1. Smooth 2. Fough 1. Orester than 2 ft. 3. Greater than 2 ft.	BOX 5
\otimes	DATE May Day V. DIP-DI6-DIP Recommendations CASE STUDY 2 70 71 72 73 74 76	2 IBM Card Type 1 BO	BOX 6

NEBRASKA DEPARTMENT OF ROADS LINCOLN, NEBRASKA

Improvement Recommended by Bichard Ruby Date 06 Sept '79

HIGHWA Highway Dright Number 1 2 3 1 DR SRL 2 DM 3 ROA 4 RC 5 RL	Y Hughnest Number 1 US 2 N 3.1 4 SEC	Design Speed Imph)		Z34 12 13 14			Hazard Number Hazard Group Numb Improvement Alterna		3 2 1	BOX 1
COSTS Capital Costs (\$1,000 15 16 17 18 19	1	,	Collision Main OOO 20 21 22 Hazard	19narice (\$100 raccid 23 24 2 Insprayem	2			Normal M 26 /7 Hazard	sintenarice 12100 yr	BOX 2
POINT H	AZARD IMPRO	VEMENTS					- 4			1
1 1	Alleviate Hazard		32	1 Remove 2 Make Breaka 3. Reconstruct 4. Reconstruct	Inlet to Sa	fe Design				63
30 3			32 33	Descriptor Code				34 35 36 37	Length (f1)	BOX
1 30			32 33	Descriptor Code)					
LONGITU	DINAL HAZAF	RD IMPRO	VEMEN	NTS	e elime		-			7
2 1			32	Remove and Install Wedge	Regrade Modificat	ion				4
2 2 3	Traffic Barrier		32	Hemove Modify (com Replace with	plate Bux New Desi	es A, B & C) gn (complete B	oxes A, B & C)	33 34	Descriptor Code (New Design Only)	BOX
2 3	B Rixigerali		32	Moduly Replace with	New Oas	gn		[]]	Descriptor Code	
[3]	APROVEMENTS Install Traffic Barrier (complete Boxes A and C)		32	At Bridge Not at Bridge		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		33 34	Descriptor Code	2
3 3 30 3	1 32 33	Front Slope (average)	Front Slove Height (ft) 35 36	Orich Width (H)		Singe Singe (arringe)	Back Stripe Height (ft)	Condition of Singer 42 1. Smooth 2. Rough	Usush of Water (III) 43 1 None 2. Less than 2 ft. 3. Greater than 2 ft.	BOX
NO IMPI	ROVEMENT									BOX 6
	TRAFFIC BARR		FICATION							1
	1 Top Heaph (red) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Post Seasons (ff1) 54 55		it Spacing Bridge End 56 56 6educed dat Reduced	Block Out 57 1. N-1 2. Yes	Ruh Red 58 1 2	3. 4	Guardrail End Int Anchored Ito g Inchored Iturnious Inchored Turnious reakaway Terminal	f rating 60 round or bridge) d or bridge) (not bridge)	BOX A
BOX B Bleguning 1 Lengthe 81 2 Shorten	(CHANGES TO	EXISTING 1 Lerigthen 2 Shorten		RDRAIL)	BOX B	רדו"	C (MILE F	(° T	F CHANGE)	BOX C
79 2 End of	Broup Group and Program					2 180	IM Card Type			30X 7

NEBRASKA DEPARTMENT OF ROADS LINCOLN, NEBRASKA

Improvement Recommended by Bichard Ruby Date 06 Sept '79

10.50	IGHWAY	Highway	Design		.br			Hazard Number		3	
Z	Oreson Number 2 3 OR SRL	Number	Speed (mph)	-1-1	234	•		Hazard for sup-No Improvement after		3 2 2	BOX 1
3 4. 5.		2. N 3. I 4. SEC									
Cap	OSTS				itenatice (\$100/accel					laute carse (\$100) ye	C X
15	16 17 18 19			20 21 22 Hazard	23 24 2 Improvem	5			26 27 Hazar	28 29 Incurrent	A CA
PC	AH TNIC	ZARD IMPRO	VEMENT	s		,					
30	1 31	Alleviate Hazard		32	Remove Make Breaka Reconstruct Reconstruct	Inlet to Sa	fe Design				~
30		Install Traffic Barrier (complete Box A)		32 33	Descriptor Code			1.	34 35 36 37	Length (ft)	ACX X
30	3	Install Energy Attenuator		32 33	Descriptor Code						
LC	ONGITUE	INAL HAZA	RD IMPRO	OVEMEN	NTS						
30] []	Curb		32	Remove and Install Worlge	Regrade Modulicati	ion .				4
30	31	Traffic Barrier		32	1 Remove 2 Morbly Icom 3 Replace with	plate Boxe New Date	n A, B & C) In (complete l	30×es A, B & C)	33 14	Descriptor Code (New Design Only)	BOX
2	3	Hopique, al		[]	1 Mixibily 2. Replace with	New Desi	р.		LT.	Lewroptra Code	
		PROVEMENTS	5	r-7					<u>.</u>		
30	1 31	Install Traffic Barrier (complete Boxes A and C)		32	1 At Bridge 2. Not at Bridge				33 14	Descriptor Code	
30	2 31 (comple Box C	Modify 32 33	Strong Strong laverage	Hennt (ft) 35 36	Drich Width (ft) 06 37 38		Stope Stope Interest 33:1	Hack Stuje Height (ft)	Cundition of Singes 42 1. Smooth 2. Rough	Water (it) 43 1. None 2. Less than 2 ft. 3. Greater than 2	BOX
N	O IMPRO	OVEMENT				4			(100 (100)		7,
30]										BOX
В	OX A (T	RAFFIC BARR	IER MOD	IFICATI	ONS)				me		
48	offise (fs) End	Heaph I inil	Specing (fr)	, t , , , , , , , , , , , , , , , , , ,		Block Out 57 1 No 2 Yes	Rub Hed S8 1. 7	No 1 Yes 2 3 4	Not Anchored (to g Anchored Turndow Breakaway Termina	foding [60 round or ordge) d or bridge) n (out break away)	BOXA
H+s.n.		HANGES TO	1 Lengthen		enge in Langth (fr)	BOX B	كاقا	C (MILE	POINT O	F CHANGE	BOX C
75	1 2 Shorten	NIP Sup and Program	2 Shorten		63 64		05 60	67 68 69 70 BM Card Type	71	12 13 14 15 76	BOX 7

	Improvement Recommended by Bichara Ruby Date 06 Sept 179	
3	HIGHWAY Highway Drigh Number Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 DR SRL 2 DN 3 ROA 3 14 5 6C 5 RL	BOX 1
8	COSTS Can'rd Costs (\$1,000) Collision Maintenance (\$100/accid) Normal Maintenance (\$100/accid) Normal Maintenance (\$100/accid) O	BOX 2
	POINT HAZARD IMPROVEMENTS 1	x 3
	1 2 Install Treffic Barrer Descriptor Code 34 36 36 37 Length (fr)	BOX
	1 3 Install Energy Attenuator 32 33 Descriptor Code	
	LONGITUDINAL HAZARD IMPROVEMENTS 2 1 Curb 1. Renxive and Regrate 32 2. Install Wedge Modification	4
	2 2 Traffic Barrier 31 1. Remove 32 2. Modify (complete Buxes A, B & C) 33 34 (New Design Only) 3. Replace with New Design (complete Buxes A, B & C)	BOX
	2 3 Bridgerall 32 1 Modify 33 33 34 Osscriptor Code	
	SLOPE IMPROVEMENTS 3 1 Install Traffic Barrer	5
1	Honge Point Front Front Strope Heady	BOX
	NO IMPROVEMENT	BOX 6
	BOX A (TRAFFIC BARRIER MODIFICATIONS) Other	BOX A
~	BOX B (CHANGES TO EXISTING GUARDRAIL) Streptoning	BOX C
8	1. End of Group 2 Ind of Group and Program 80 IBM Card Type	30X 7

Improv	vement Recomme	nded by 2	Rich	ord Ru	by	Date 06	Sept	179
HIGHV Highway Design Design 1 2 1 1 DR SRL 2 DM 3. ROA 4 RC 5. RL	Hi-shway Number 7 3 4 5 6 7 1 US 3.1 4 SEC	Datagen Speed (might)	10 11	23 4 2 13 14		Hazard Number Hazard Group Number Improvement Alternatio	human	324
COSTS Capital Conta 15 15 16 17 1	15	[Collision Maint OO / 20 21 22 Hazard	enance (\$100/accid) 23 24 25 Improvement			Normal Main 26 27 Hazard	Province (\$100 v) 1 28 29 Ingrovement
POINT	HAZARD IMPRO	VEMENTS	32	Remove Mike Breakaway at 3 Recurstruct Inlet t Reconstruct Cross t	o Safe Design			
30	2 Install Traffic Barrier (complete Box A) 3 Install Energy Attenuation		37 33	Descriptor Code		Γ.	14 35 36 37	ength (II)
2 30 2 30	TUDINAL HAZAF 1 Curb 2 Traffic Barrier 3 Bridgerail		32	1 Rensive and Region 2 Install Wedge Modul 1. Remove 2. Modify (complete 6 3. Replace with New 6 1. Modify 2. Replace with New 6	Boxes A, B & C) Design (complete	Boxes A, B & C)	33 34 (1)	Descriptor Code few Design Only) escriptor Code
3 30 30	IMPROVEMENTS Install Traffic Barrier (complete Boxes A and C) Himp Point Office (11) 2 Modify Install Complete Box C)		32 Front Slope Height (ft) 35 36 36	1. At Bridge 2. Not at Bridge Utch Width (ft) 37 38	Back Stope (arcray)	Hack Storme Hereght (151)	33 34	Oranth of Water Hall State Control of Market Hall State Control of the Control of
NO IM	APROVEMENT	97:						
BOX A	A (TRAFFIC BARR	Put Spacing (tt)	Post For F	Specing Hink Flut Grant and H	Hub Hed 1sH	Yes 7 And 3 And	Anchored to gra- hored to graved incred to receive and some to	Indicated the state of the stat
Heynning	B (CHANGES TO	EXISTING 1 Lengthen 2 Shorten		DRAIL)	05	C (MILE PO	05	CHANGE) 1 ard 175 76
2 1 En	it of Group it of Group and Program				2 ,	BM Card Type		

COST EFFECTIVENESS PROGRAM

UNIVERSITY OF NEBRASKA AND NEBRASKA DEPARTMENT OF ROADS

HIGHWAY DESIGN NUMBER = DR- 7
TYPE HIGHWAY = US-123
DESIGN SPEED = 60 MPH
ADT = 1234
PROJECT LIFE = 20.0 YRS
INTEREST RATE = 9.000 %
DATE = 9-6-79

PAGE = 3

			H	A Z	A R	D				I	M	P	R	0	¥	E	Ħ	E		X T	
HAZARD	GRCUP		DESC		SIDE	MILE-	POSI	IMPR	IMPR	HAZARD	CLEA		FIRS		TOT	AL		OST	. a b	ZERO ACCIDENT	BENEFIT
20		CODE	CUDI	INDUA	ROAD	BEG	END	abi	CODE	IDDDA	ZON					ST		ALU		REDUCTION	
				(INJ/YR)						(INJ/YR)	(PT)	(\$10	00)	(\$/	YR)				(%)	
2	2	6	6	0.01494	1	50.100	50-250	1	2-2-1	0.00000	6			2_4	****	***	****	***	≠G R	OUD*****	*******
3	2	6 7	2	0.01494	i	50.100	50.250	1	4-0-0		6									-EFFECTIV	
2	2	6	6	0.01494	1	50-100	50.250	2	2-2-2	0.01355	7			0.5	****	***	****	***	≠G B	OUP****	*******
3	2	6 7		0.00000	1	50.100	50.250	2	3-2-0	0.01610	8			2.5			NC	T C	ST	-EFFECTIV	E
2	2	6	6	0.01494	1	50.100	50.250	3	2-2-2	0.01243	10			1.9	***	***	****	***	FG R	OUD*****	*******
3	2	7	2	0.00000	1	50.100	50.250	3	2-2-0	0.00000	0			3.0	***	***	** 2 8	ROB	ME	SSAGE = 1	0*****
2	2	6	6	0.01494	1	50.100	50.250	4	2-2-3	0.00000	10		1.	3.5	****	***	****	***	≠G B	OUD****	******
3	2	7	2	0.00000	1	50.100	50.250	4	3-2-0	0.01517	10		1	1.5			#0	T C	DST	-EFFECTIV	E

COMPUTER OUTPUT LISTING OF CASE STUDY NO. 2